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Abstract

Financial markets frequently experience extreme movements in the negative side.

Accurate computation of value at risk and expected shortfall are the main tasks of the risk

managers or portfolio managers. In this paper, gold prices (in US dollars) have been

examined to illustrate the main idea of extreme value theory and discuss the tail behaviour.

GEV and GPD are used to compute VaR and ES. The results show that GPD model with

threshold is a better choice.
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1. Introduction
Risk managers and Portfolio managers concern extreme negative side movements in

the financial markets. A long list of research has posted on this topic. Ramazan and Faruk

(2006) examine the dynamics of extreme values of overnight borrowing rates in an

inter-bank money market. Generalized Pareto distribution has been picked for its well

fitting. Fernandez (2005) using extreme value theory to the United States, Europe, Asia, and

Latin America financial markets for computing value at risk (VaR). One of his findings is,

on average, EVT provides the most accurate estimate of VaR. Byström (2005) applied

extreme value theory to the case of extremely large electricity price changes and declared a

good fit with generalized Pareto distribution (GPD). Bali (2003) determines the type of

asymptotic distribution for the extreme changes in U.S. Treasury yields. In his paper, the

thin-tailed Gumbel and exponential distribution are worse than the fat-tailed Fréchet and

Pareto distributions. Neftci (2000) found that the extreme distribution theory fit well for

the extreme events in financial markets. Gençay and Selçuk (2004) investigate the

extreme value theory to generate VaR estimates and study the tail forecasts of daily returns

for stress testing. Marohn (2005) studies the tail index in the case of generalized order

statistics, and declares the asymptotic properties of the Fréchet distribution. Brooks, Clare,

Dalle Molle and Persand, G., (2005) apply a number of different extreme value models for

computing the value at risk of three LIFFE futures contracts. Based upon the long list of

applications of extreme value theory and theory basis, this paper will first discuss the

generalized extreme value methods and then fit the model with gold prices (in US dollars)

to compute the chance of new record generated in the next period. Different models are

also been fitted with gold data. The results show that GPD model with threshold is a better

choice.

2. Methodology
2.1 Generalized Extreme Value (GEV) Distribution

Extreme movements in gold prices can be measured by the daily returns of the gold

prices per troy ounce (reported on London Gold Market). Losses or negative returns are

the main concerns in the field of financial risk management, for examples stock market

crashes. For simplicity, extreme movements in the left tail of the distribution can be

characterized by the positive numbers of the right high quintiles. Let
i

X be the negative

of the ith daily return of the gold prices between day i and day 1i − . Define

1(ln ln )
i i i

X P P
−

= − −

where
i

P and 1i
P

−

are the gold prices of day i and day 1i − . Suppose that

1 2, ,...,
n

X X X be iid random variables with an unknown cumulative distribution function

(CDF) ( ) Pr( )
i

F x X x= ≤ . Extreme values are defined as maxima (or minimum) of the n

independently and identically distributed random variables 1 2, ,...,
n

X X X . Let ( )n
X be

the maximum negative side movements in the daily gold prices returns, that is

( ) 1 2max( , ,..., )
n n

X X X X= .

Since the extreme movements are the focus of this study, the exact distribution of ( )n
X

can be written as
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( ) 1 2Pr( ) Pr( , ,..., )
n n

X a X a X a X a≤ = ≤ ≤ ≤

1

( )
n

i

F a
=

= ∏

( )n
F a= (1)

In practice the parent distribution F is usually unknown or not precisely known. The

empirical estimation of the distribution ( )n
F a is poor in this case. Fisher and Tippet

(1928) derived the asymptotic distribution of ( )n
F a . Suppose

( )n
µ and

( )n
σ are

sequences of real number location and scale measures of the maximum statistic
( )n

X .

Then the standardized maximum statistic

*

( ) ( ) ( ) ( )( ) /
n n n n

Z X µ σ= −

Converges to ( ) /z x µ σ= − which has one of three forms of non-degenerate distribution

families such as

1 /

1 /

( ) e x p { e x p [ ] } ,

( ) e x p { } , 0

0 ,

( ) e x p { [ ] } , 0

1 ,

H z z z

H z z z

e l s e

H z z z

e l s e

ξ

ξ

−

= − − − ∞ < < ∞

= − >

=

= − − <

=

(2)

These forms go under the names of Gumbel, Fréchet, and Weibull respectively. Here µ

and σ are the mean return and volatility of the extreme values x and ξ is the shape

parameter or called 1/ξ the tail index of the extreme statistic distribution. With

0, 0, 0ξ ξ ξ= > < represent Gumbel, Fréchet, and Weibull types of tail behavior

respectively. In fact Gumbel, Fréchet, and Weibull types can be fit for exponential, long,

and short tails respectively.

Embrechts and Mikosch (1997) proposed a generalized extreme value (GEV) distribution

which included those three types and can be used for the case stationary GARCH processes.

GEV distribution has the following form

1/

( ; , ) exp{ exp[ ( ) / ]}, ; 0

exp{ [1 ( ) / ] , 1 ( ) / 0; 0

H x x x

x x

ξ

ξ

µ σ µ σ ξ

ξ µ σ ξ µ σ ξ−

= − − − − ∞ ≤ ≤ ∞ =

= − + − + − > ≠

(3)

2.2 Parameters Estimation for GEV

Suppose that block maxima 1 2, ,...,
k

B B B are independent variables from a GEV

distribution, the log-likelihood function for the GEV, under the case of 0ξ ≠ , can be given
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as

1

1 /

1

l n l n (1 1 / ) l n {1 ( ) / }

{1 ( ) / }

k

i

i

k

i

i

L k B

B
ξ

σ ξ ξ µ σ

ξ µ σ

=

−

=

= − − + + −

− + −

∑

∑

(4)

For the Gumbel type GEV form, the log-likelihood function can be written as

1 1

ln ln ( ) / e x p { ( ) / }
k k

i i

i i

L k B Bσ µ σ µ σ

= =

= − − − − − −∑ ∑ (5)

As Smith (1985) declared that, for 0.5ξ > − , the maximum likelihood estimators, for

, ,ξ µ andσ , satisfy the regular conditions and therefore having asymptotic and consistent

properties. The number of blocks, k and the block size form a crucial tradeoff between

variance and bias of parameters estimation.

POT and GPD

Fitting models with more data is better than less, so peaks over thresholds (POT)

method utilizes data over a specified threshold. Define the excess distribution as

( ) P r ( | )

( ) ( )

1 ( )

h
F x X h x X h

F x h F h

F h

= − < >

+ −

=

−

(6)

where h is the threshold and F is an unknown distribution such that the CDF of the

maxima will converge to a GEV type distribution. For large value of threshold h , there

exists a function ( )hτ > 0 such that the excess distribution of equation (6) will approximated

by the generalized Pareto distribution (GPD) with the following form

, ( )

1 /

( ) 1 e x p ( / ( )) , 0

1 (1 / ( )) , 0

h
H x x h

x h

ξ τ

ξ

τ ξ

ξ τ ξ−

= − − =

= − + ≠

(7)

where 0x > for the case of 0ξ ≥ , and 0 ( ) /x hτ ξ≤ ≤ − for the case of 0ξ < . Define

1 2, ,...,
k

x x x as the extreme values which are positive values after subtracting threshold h .

For large value of h , 1 2, ,...,
k

x x x is a random sample from a GPD, so the unknown

parameters ξ and ( )hτ can be estimated with maximum likelihood estimation on GPD

log-likelihood function.

VaR and ES

Based on equation (6) and GPD distribution, the unknown distribution F can be

derived as

, ( )( ) (1 ( )) ( ) ( )
h

F y F h H x F h
ξ τ

= − + (8)



�
An Extreme Value Theory Approach for Analyzing The Extreme Risk of the Gold Prices� � � 101

where y h x= + . ( )F h can be estimated with non-parametric empirical estimator

( ) ( ) /F h n k n
∧

= −

where k is the number of extreme values exceed the threshold h . Therefore the

estimator of (8) is

( ) (1 ( )) ( ; , ( )) ( )F y F h H x h F hξ τ
∧ ∧ ∧ ∧ ∧ ∧

= − + (9)

where ξ
∧

and ( )hτ

∧

are mle of GPD log-likelihood. High quantile VaR and expected

shortfall can be computed using (9). First, define ( )
q

F VaR q= as the probability of

distribution function up to q
th

quantile
q

VaR . Therefore

1( )qVaR F q
∧∧

−

=

( ){[( / )(1 )] 1}/h h n k q ξτ ξ
∧∧ ∧

−

= + − − (10)

Next, given that
q

VaR is exceeded, define the expected loss size, expected shortfall (ES),

as

( | )

( | )

q q

q q q

ES E X X VaR

VaR E X VaR X VaR

= >

= + − >

(11)

From (10), qES
∧

can be computed using qVaR
∧

and the estimated mean excess function of

GPD distribution. Therefore,

/(1 ) ( ( ) ) /(1 )q qES VaR h hξ τ ξ ξ
∧ ∧ ∧ ∧ ∧ ∧

= − + − −

3. Data and Empirical Results

3.1 Data and Data Exploration

The upper panel of Figure 1 shows the daily gold prices per troy ounce (in US dollars)

over the period of January 1, 1985 through March 31, 2006. The lower panel of Figure 1 is

the continuous percentage returns of the gold prices in the upper panel. Table 1 shows that

daily gold returns have a positive skew (0.76>0) and large kurtosis (14.16>3). It shows the

distribution of returns has a fat tail.
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Figure 1 Daily Gold Prices Per Troy Ounce (in US Dollars)

and Daily Gold Percentage Returns
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Table 1 Descriptive Statistics of Daily Gold Percentage Returns

Minimum -6.43

1st Quarter -0.43

Mean 0.012

Median 0

3rd Quarter 0.43

Maximum 9.64

Total N 5371

Std Deviation 0.90

Skewness 0.76

Kurtosis 14.16

Figure 2 shows that there is no autocorrelation in the daily gold percentage return

series but the squared daily gold percentage returns appear significant autocorrelation.

Figure 2 suggest that the daily gold percentage returns can be a GARCH time series model.

It is reasonable to apply GEV distribution to model the maxima negative returns and GPD

distribution to model the excess distribution for negative daily gold percentage returns.
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Figure2 ACF of Daily Gold Percentage Returns and

Squared Daily Gold Percentage Returns
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3.2 Parametric Maximum Likelihood Estimates

The block maxima of negative returns have been fitted to GEV model with three

different block sizes (yearly, quarterly, and monthly). The results, listed in Table 2,

show the estimates of three parameters ξ , σ , and µ with increasing block

numbers and the estimates of standard error of the parameters are listed in

parentheses. All block numbers show that shape parameter is positive except yearly

block size case is negative but not significant. All the parameters have decreasing

estimated standard errors as the number of blocks increased. In general, the block

maxima of the negative returns follows a Fréchet family of GEV for quarter and

month block frames. The Fréchet type of GEV confirms that the original series has

fat tail.

Table 2 Parametric Maximum Likelihood Estimates with three block frames

(block sizes: year, quarter, and month) and chance of a new record will

occur during the next period

Year Quarter Month

ξ
-0.06

(0.19)

0.11

(0.10)

0.17

(0.06)

σ
0.97

(0.18)

0.75

(0.07)

0.59

(0.03)

µ
2.92

(0.24)

1.72

(0.09)

1.17

(0.04)

New record 1.77% 0.86% 0.44%
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Figure 3, from left to right is the crude residual plot and quantile-versus-quantile plot

with exponential distribution as the reference distribution for quarter block maxima. The

Q-Q plot looks linear and shows that the GEV distribution model is a good choice. It shows

that the Fréchet distributions are fitted well for the block maxima negative returns.

Figure 3 Residual plots versus quarter frame block maxima
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With the above parameters and corresponding Fréchet distributions, there is 1.77%,

0.86% and 0.44% chance that a new record will be occurred during the next period (year,

quarter and month). The point estimates and 95% confidence interval of 10 and 20 years

return levels are listed below. Given the same time interval (10 or 20 years), the point

estimate is increased with decreasing block sizes. With the increasing time interval, the

point estimate increased and confidence interval is wider. It reveals that time is a risk

factor.

Table 3 Return levels for the three block frames with 95% confidence bounds

Year Quarter Month

10 year return level
4.98

(4.31, 6.91)

5.13

(4.28, 7.17)

5.54

(4.57, 7.29)

20 year return level
5.58

(4.75, 9.13)

5.96

(4.77, 9.08)

6.53

(5.18, 9.11)
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3.3 Extreme Over Thresholds and Risk Measures

A suitable threshold should be specified to find the GPD approximation of the

negative returns’ excess distribution. Try several thresholds to fit the excess GPD. Do

QQ-plots with corresponding GPD distributions for the daily negative returns over the

thresholds (shown on Figure 4) and compare some significant numbers (Table 4).

Figure 4 Residual diagnostic check for GPD ( with threshold 2)
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Figure 4 show that the threshold 2 model fit the GPD well. On the top-left panel of

Figure 4 is the GPD estimate of the excess distribution, top-right panel is the tail estimate

of equation (9), bottom-left panel is the scatter plot of residuals, and bottom-right panel is

the QQ-plot of residuals. Base on the diagnostic plots show data fit GPD model well.

Table 4 shows that the shape parameter is stable increasing as threshold increasing

from 1.5 to 2, and the shape parameter swings to negative value. The details are displayed

as Figure 5. Theoretically, shape parameter of GEV and GPD should be the same. The

shape parameters of threshold 2 and the month block size GEV are similar (see table 2).

According to the referred information, the estimate value 2 for shape parameter is the best

specified threshold. The GPD approximation has shape parameter 0.15 and scale parameter

0.56.
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Table 4 GPD model fitting results with thresholds from 1 to 6

threshold # of exceed
Probability less

than threshold
ξ ( )hτ

1 461 0.9142 0.06

(0.05)

0.62

(0.04)

1.25 306 0.9430 0.03

(0.06)

0.66

(0.05)

1.5 210 0.9609 0.02

(0.07)

0.68

(0.06)

1.75 152 0.9717 0.09

(0.09)

0.60

(0.07)

2 106 0.9803 0.15

(0.12)

0.56

(0.09)

2.25 63 0.9882 0.05

(0.14)

0.72

(0.14)

2.5 46 0.9914 0.10

(0.18)

0.67

(0.16)

Figure 5 Estimates of shape parameter for negative returns

as a function of the threshold values.
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To measure the risk, Value-at-Risk and expected shortfall (ES) can be calculated based on

GPD approximation with threshold 2. The results is listed in row 1 of Table 5. For

comparison, the values of the GPD approximation with threshold 2 and normal distribution

approximations are listed in the following table. All the values of Normal Distribution

approximation is under estimate. GPD model with threshold 2 is a better chosen.
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Table 5 Risk measures (VaR and ES) for GPD model

with thresholds 2 compared with normal distribution

VaR.95 ES.95 VaR.99 ES.99

Threshold=2 1.511492 2.085664 2.401366 3.126575

Normal Distr. 1.461313 1.835598 2.071742 2.375272

4. Concluding Remarks
Fisher and Tippet theorem has an assumption of iid, however, the GEV is suitable

for stationary time series including stationary GARCH cases. Exploring the dependence

properties on extreme values and the joint-tail properties of multivariate extreme value

cases are appeared not long ago. Further investigation is definite welcome.
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