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Abstract 

 
Bollerslev’s (1986) standard GARCH(1,1) model has been successful in the literature of volatility modelling and 
forecasting in the past two decades. Many of its extensions are contributed to examine the stylized features often 
observed with financial asset data. One of the distinct success is Bollerslev and Ghysels’ (1996) periodic GARCH 
model, which takes into account periodic variation in the volatility of the underlying process. However, Drost and 
Nijman (1993) find that the conventional GARCH formulation works for only one sampling interval arbitrarily 
decided for the data in hand. This formulation does not apply to any other time intervals due to the assumption of an 
i.i.d. probability assumption for the underlying data. One of the problems caused by this will be that we cannot use 
ML method to estimate the GARCH model if the model is not for the original data set, but rather, for its temporally 
aggregated or dis-aggregated counterpart. Dorst and Nijman (1993) introduce the so-called weak GARCH 
formulation to tackle this problem and find this form of GARCH models apply to all sampling intervals for any 
given set of data. However, the ML method does not apply to the weak form of GARCH models since this 
formulation does not assume any probability distribution for the underlying standardised innovations. They thus  
propose a set of formulae to map the parameters of a weak GARCH(1,1) process sampled at one time interval to 
those of the same process but sampled at any other time interval. 
 
However, there is hitherto no analytical results for a weak PGARCH process. It is the main purpose of the paper to 
investigate the relationship amongst the parameters of a weak GARCH process before and after temporal 
aggregation. Our simulation results tend to suggest that a two-stage PGARCH process will aggregate into a weak 
GARCH process. Some analytical results about the aggregated process are introduced too. 
 
Key words: strong- and weak-GARCH, temporal aggregation, Monte Carlo simulation 
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1. Introduction 
 

The standard GARCH(1,1) model introduced by Bollerslev (1986) has witnessed its success 
in the literature of volatility modelling and forecasting. Voluminous studies have been committed 
to this model’s application in empirical circumstances. Many of its extensions involve modelling 
stylised features of the financial time series. A pronounced one of them is intraday volatility 
pattern, or called periodicity in volatility as a general term. Failure to accommodate this feature 
into the standard GARCH(1,1) model will absolutely lead to a model mis-specification problem. 
Bollerslev and Ghysels (1996, hereafter BG), amongst others, introduce their periodic GARCH 
model (hereafter  PGARCH) to tackle this problem. However, Drost and Nijman (1993, hereafter 
DN) find that the formulation of the standard GARCH(1,1) model proposed by Bollerslev (1986) 
is applicable to only one sampling frequency of any data. To be specific, if we assume Bollerslev 
(1986)’s standard GARCH(1,1) model for a set of hourly data, the aggregated daily or weekly 
data will no longer follow this model. As a result, we can not use (quasi-) maximum likelihood 
method to estimate the standard GARCH(1,1) model for the aggregated daily or weekly data. DN 
suggest that the reason why Bollerslev’s GARCH formulation does not apply to all time spans is 
the assumption of an i.i.d. probability distribution for the standardised errors. They therefore 
suggest a weak form of the standard GARCH model and a set of formulae mapping the parameters 
of the model sampled at any two different frequencies. 
  
1.1 Review of the Drost and Nijman Aggregation Theory 

 
Based on the continuous-time diffusion limit of the GARCH(1,1) process developed by 

Nelson (1990), DN (1993) propose a theoretical framework for the temporal aggregation of weak 
GARCH processes. Assuming that there is an underlying GARCH(1,1) diffusion, they derive a 
set of formulae for parameter mapping between any two discrete GARCH(1,1) models sampled at 
different frequencies. For example, if one has a series of daily data and desires to know what a 
weekly GARCH(1,1) model looks like, a natural approach to achieving this is to simply aggregate 
the daily data into weekly data and estimate them directly. Alternatively, one may first estimate 
the daily data to get the daily GARCH(1,1) estimates. Substitution of the daily estimates into the 
DN aggregation formulae gives us the weekly GARCH(1,1) parameters. 

Before introducing the DN temporal aggregation theory, it is necessary to understand the 
three types of GARCH(p,q) processes, one of which underlies the theory. The definitions of the 
three GARCH(p,q) processes are described as follows: Given that  
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tε  is said to be  
1. a strong GARCH(p,q) process if 2/1)/( ttt hz ε=  is i.i.d. with zero mean and unit variance; 
2. a semi-strong GARCH(p,q) process if the conditional expectation of tε  and 2

tε  upon the lags of 

tε  are equal to, respectively,  0 and th ; and 
3. a weak GARCH(p,q) process if the best linear predictor of tε and 2

tε  in terms of 1, 1−tε , 2−tε ,…, 
2

1−tε , 2
2−tε ,…, are equal, respectively, to 0 and th . 

Note that both strong and semi-strong GARCH processes also satisfy the definition of a 
weak GARCH process, whereas a strong GARCH process is also a semi-strong GARCH process. 
Of the three definitions above, only the weak GARCH process is closed under temporal 
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aggregation. In other words, a weak GARCH process remains a weak GARCH process under 
temporal aggregation. On the contrary, (semi-) strong GARCH processes will no longer be (semi-) 
strong GARCH processes, but rather weak GARCH processes, under temporal aggregation. An 
implication of this is that the conventional treatment of volatility modelling by the (semi-) strong 
GARCH models is not appropriate, as these models will be valid at only one frequency. 
Unfortunately, the weak GARCH type of models is dealing with the best linear projection of the 
underlying process, rather than its conditional expectation that has been regarded as the subject 
under investigation in the literature of GARCH type of models. By definition, however, the best 
linear projection of any variable upon a given information set is equal in size to its conditional 
expectation upon the same information set. The weak GARCH class of models is thus still useful 
for modelling and forecasting conditional heteroscedasticity. 

Within the framework of weak GARCH processes, DN derive a set of formulae for mapping 
the parameters of a GARCH(1,1) model sampled at any temporal frequency onto the parameters 
of another GARCH(1,1) model sampled at another temporal frequency. To illustrate, let 

2
1 1 1 1

H H H
t t th hφ α ε β− −= + +  denote the best linear projection equation and Hk  the unconditional 

kurtosis of the high-frequency weak GARCH(1,1) process tε , and let 
hλ = L

m)(φ + 2
1( ) 1
L

m λα ε − + 1( ) 1
L

m hλβ −  denote the best linear projection equation and L
mk )(  the 

unconditional kurtosis of the aggregated low-frequency weak GARCH(1,1) process λε , m being 
the number of high-frequency intervals that each low-frequency interval contains. Then, 
 

( ) 1 1 1( , , , )L H H H
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Refer to DN (1993) for the detailed formulae.  
It is worth noting that Hk , the unconditional kurtosis of the high-frequency weak 

GARCH(1,1) process tε , appears explicitly in (2b) and (2d), and implicitly in (2c). The value of 
Hk  is therefore required for the set of formulae to work, which does not apply to the temporal 

aggregation of ARMA models1. To ensure non-negativity for Hk , moreover, the sum of 1
Hα  and 

1
Hβ  must fall inside the unit circle and 2

1 11 ( )H Hα β− +  must be larger than 2
1( 1)( )H Hkξ α− , where 

Hkξ  denotes the kurtosis of the high-frequency standardised strong GARCH(1,1) process. Also 
note that the aggregation frequency m is also allowed to be smaller than 1, such a case constituting 
the dis-aggregation case. In other words, the implied parameters constitute a higher-frequency 
GARCH(1,1) model. Given a weak GARCH(1,1) model sampled at any frequency, therefore, one 
can derive any other weak GARCH(1,1) model sampled at another frequency without having to 
estimate it. 
  
1.2 Intended contribution of the paper 
 

Having reviewed DN’s temporal aggregation theory for the standard GARCH model, it is 
one our main concerns in this paper to find out if there is any relationship between the parameters 
for a PGARCH(1,1) process before and after temporal aggregation. In particular, we will examine, 
via Monte Carlo simulations, what would happen if the standard GARCH(1,1) formulation is 

                                                 
1 But the temporal aggregation of ARMA models requires the existence of second moments. For the results of the 
temporal aggregation of ARMA type of models, see e.g. Palm and Nijman (1984) and Nijman and Palm (1990a, b). 
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replaced by BG’s PGARCH(1,1) model. Intuitively, if we aggregate a set of data given by a 
PGARCH(1,1) model into relatively lower-frequency intervals, the aggregation interval being 
equal to the lower-frequency interval in length, the volatility of the aggregated data should be free 
of periodicity. In other words, it is very likely that the aggregated data be characterised by the 
standard GARCH(1,1) formulation. The main thrust of this paper is therefore to uncover the 
volatility mechanism of a PGARCH process upon temporal aggregation. We adopt BG’s 
PGARCH(1,1) model with a simple two-stage periodic variation in either the intercept or the 
alpha parameter. The remainder of the paper is organised as follows. Section 2 explains the 
simulation framework and section 3 discusses the simulation results. Section 4 concludes.  
 
2. Monte Carlo Simulation Framework 
 
        Similar to the simulation framework in BG2, the basic GARCH(1,1) model is characterised 
by Parameterisation 1 in Table 1 below. Parameterisation 1 is then varied to become 
Parameterisations 2 and 3 in Table 1 so as to show the shift in intercept ( Hφ ) or parameter 1

Hα  
across the two stages of each periodic volatility cycle. Parameterisations 1 and 2 in Table 1 are 
used to mark the change in intercept ( Hφ ) of the GARCH(1,1) model, whereas Parameterisations 
1 and 3 in Table 1 are employed to specify the shift in parameter 1

Hα  across the two stages of each 
volatility cycle. 
 

Table 1: Parameterisations of the GARCH(1,1) model for the DGPs 
 

Notes: 1. Hkξ  denotes the unconditional kurtosis of the standardised innovation tξ . 

2. 2)( Hσ  denotes the unconditional variance of tε , implied by Hφ , H
1α , 

and H
1β . Namely, 2

1 1

( )
(1 )

H
H

H H

φσ
α β

=
− −

. 

The actual models used in the DGPs for high-frequency observations are therefore given as 
follows. 
 
2.1 DGPs for high-frequency data 
 

                                                 
2 In BG’’s (1996) simulations for a periodic change in parameter 1

Hα of their PGARCH(1,1) model, they let 11
Hα  = 

0.4666 and 12
Hα = 0.0727, whilst Hφ and H

1β are fixed at, respectively, 0.05 and 0.7. 

 Parameterisations 
 1 2 3 
Hφ  0.05 0.01 0.05 
H

1α  0.15 0.15 0.05 
H

1β  0.7 0.7 0.7 
H

1α + H
1β  0.85 0.85 0.75 
2)( Hσ  0.3333 0.0667 0.2 

tξ ~ t5 25 25 25 Hkξ  
tξ ~ N (0,1) 3 3 3 
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High-Frequency observations  (in-sample size: 4960, out-of-sample size: 40) 
 
Conditional mean (zero mean): 

ty = tε
3= t thξ ,                                        for t = 1 to 5100 (3) 

where tξ ~ i.i.d. N(0,1)4 or t5
5,6, th  denotes the conditional variance of the innovation tε  and 

follows a PGARCH(1,1) model given by (4a) and (4b) below. 
 
DGP 1: PGARCH(1,1) of two-stage periodicity in intercept  

2
( ) 1 10.15 0.7H

t s t t th hφ ε − −= + +                    for t = 1 to 5000, where (4a) 
s(t) = 1 for odd t and 2 for even t, and 

1
Hφ  = 0.05 

2
Hφ  = 0.01. 

 
DGP 2: PGARCH(1,1) of two-stage periodicity in alpha 

2
1 ( ) 1 10.05 0.7H

t s t t th hα ε − −= + +                   for t = 1 to 5000, where (4b) 
s(t) = 1 for odd t and 2 for even t, and 

11
Hα  = 0.15 

12
Hα  = 0.05. 

 
The parameters in (4a) and (4b) are selected in according to the common fact that the estimate of 
the lagged conditional variance dominates the estimate of the squared lagged return innovations 
for daily or intra-daily data. Moreover, these parameters satisfy the requirements for DN’s 
aggregation formulae to work for both stages. 
 
Given the high-frequency observations, we aggregate them into relatively low-frequency 
observations, the aggregation interval being equal to two consecutive high-frequency intervals in 
length to avoid any aliasing problem. 
 
Low-Frequency Observations  (in-sample size: 2480, out-of-sample size: 20) 

2 2

2( 1) 2( 1)
1 1

t i i
i i

y y yλ λ λ λε ε+ − + −
= =

= = = ≡∑ ∑ ∑     for λ =1 to 2500, and (5) 

th hλ = ∑ =
2

2( 1)
1

i
i

h λ+ −
=
∑  for λ =1 to 2500, (6) 

where subscripts λ  and t refer, respectively, to the low-frequency time scale and the 
high-frequency time scale. 

                                                 
3 Academic research has also been committed to periodicity in the conditional mean of financial asset returns. 
However, significant periodic patterns in the conditional mean of any particular financial asset would imply arbitrage 
opportunities, which would disappear as soon as they are perceived via intensive trading on that asset. In other words, 
a periodic pattern in the conditional mean would be very short-lived. We thus do not include this possibility in the 
mean equation here. 
4 A Gaussian disturbance is used to examine whether model mis-specification or fat-tailedness in the pre-filtered data 
is the major contributor to the size of the fourth moment of the filtered data. 
5Similar to the definitions of the three types of GARCH processes described in Section 1, assuming an i.i.d. 
distribution for a PGARCH(1,1) DGP will cast it into the category of strong PGARCH processes. 
6 In order to take care of the fat-tails of the financial asset return distribution often observed in empirical studies, we 
also employ a Student’s t5 as the driving disturbances. 
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According to DN (1993), strong GARCH processes will become weak GARCH processes 
under temporal aggregation in normal context. It is of interest to know whether a high-frequency 
GARCH process, characterised by a periodic pattern in the parameters, will also become a weak 
GARCH one upon temporal aggregation. We speculate that the answer is positive since the 
assumption of i.i.d. for the high-frequency strong GARCH(1,1) process might not hold under 
temporal aggregation. 

Taking into account the choice of high-frequency driving disturbances among N(0,1) and t5 
doubles the cases that are examined. Table 2 below summarises the settings of all four 
experiments. 

Table 2: Specifications of the experiments 

Case No DGP No Driving 
Disturbances Case No DGP No Driving 

Disturbances 
Case 1 DGP 1 N(0,1) Case 3 DGP 1 t5 
Case 2 DGP 2 N(0,1) Case 4 DGP 2 t5 

 
2.2 Model Specification and Forecasting Procedures 
 
          The standard GARCH(1,1) model assuming constant parameters is fitted to both the 
high-frequency and the aggregated low-frequency observations. It is specified as follows. 
 
strong standard GARCH(1,1) for high-frequency observations: 
 

t t t ty ε ξ σ= = ,                      (7a) 
where tξ ~ i.i.d. standardised 

1
tν  or N(0,1), 

2 2 2
1 1 1 1

H H H
t t t     σ φ α ε β σ− −= + + , and                       (7b) 

superscript H stands for high-frequency. 
 
strong standard GARCH(1,1) for aggregated observations: 
 
For ease of reference, let the superscript L stand for low-frequency. Substitute L for superscript H in 
(7a) and (7b), and rewrite them as 
 
yλ λ λ λε ξ σ= = 7,                          (8a) 

where λξ ~ i.i.d. standardised 
2

tν  or N(0,1), and 
2 2 2

(2) 1(2) 1 1(2) 1
L L L    λ λ λσ φ α ε β σ− −= + + ,                       (8b) 

where the parenthesised 2 in the subscripts denotes the number of high-frequency periods within 
each aggregation interval. 
          
       There are two points worth noting: i) in the case of t5 disturbances, the two numbers of 
degrees of freedom v1 (for the HF GARCH(1,1)) and v2 (for the LF GARCH(1,1)) are also part of 
the parameters under estimation by the ML method; ii) both the HF and LF GARCH(1,1) models 
are strong GARCH models since they both require the assumption of i.i.d. for the return 
innovations. 

                                                 
7 Having also conducted a separate set of experiments allowing for a constant term in (8a), however, we do not find 
the constant’s estimate to be significantly different from zero. No subsequent results are different from those from 
assuming zero constant term either. 



             Temporal Aggregation of a Strong PGARCH(1,1) Process 7 

 

 
implied Aggregated Weak GARCH(1,1): 
 
Thanks to the DN aggregation theory, the aggregated weak GARCH(1,1) model is given by 

2
λζ  = (2)

DNφ  + 2
1(2) 1
DN

λα ε −  + 2
1(2) 1
DN

λβ ζ − ,  (9) 

where 2
λζ  denotes the linear projection of the squared low-frequency innovation, 2

λε , on the 
Hilbert space spanned by {1, 1λε − , 2λε − ,…, 2

1λε − , 2
2λε − ,…}. 

 
2.3 Reported Summary Statistics 
 

In Table 3 below, summary statistics will be reported including the ML estimates of the HF 
and LF GARCH(1,1) model parameters, the degrees of freedom of the driving disturbances (for 
the t5 cases), the parameters of the DN implied low-frequency GARCH(1,1) model, the 
unconditional variance implied by the model parameter estimates, and the unconditional kurtosis. 

The data are generated under each DGP to ensure that 5000 high-frequency (pre-aggregated) 
observations are available for each replication. The impact of initial values is allowed for by 
allowing the DGP to run for 200 observations before sampling. 100008 replications, i.e. N = 
10000, are completed for each simulation. 

The mis-specified strong standard GARCH(1,1) filter is estimated by the quasi-maximum 
likelihood9 method using the BFGS algorithm, with the average of each of the parameters across 
the two stages in the PGARCH(1,1) DGP (for high-frequency estimation) and its corresponding 
DN implied parameters (for low-frequency estimation) as the initial values. WinRATS version 
5.03 is used to perform the simulations and calculations on 4 PC’s of Intel PIII 733K (and faster) 
CPUs. 
 
3. Results 
 

This section discusses our simulation results for the four cases in Table 2 above. But to help 
understand the impacts of volatility periodicity on the ML estimates of the mis-specified strong 
GARCH(1,1) model, we start with examination of the model estimates under standard 
no-periodicity conditions. In particular, we want to know how well the ML method estimates the 
parameters in such a context. Section 3.1 below reports and discusses the averaged biases of the 
ML estimates of the strong standard GARCH(1,1) filter for both high-frequency and aggregated 
(low-frequency) observations from their true values given no patterns of volatility periodicity in 
the DGP. 
 
3.1 Biases of the ML Parameter Estimates of the Well-Specified Strong Standard GARCH(1,1) 
Filters under No-Periodicity Standard Circumstances 
 

                                                 
8 We try 1000, 5000, and 10,000 replications for a few of the experiments, and suggest that 10,000 should be the 
minimum value to generate consistent results across different seed numbers for the t cases. Despite efficient codes 
and fast machines, however, the steps involved (data generation, ML estimation of the strong standard GARCH(1,1) 
filter for both the HF and LF observations, calculation of the aggregated weak GARCH(1,1) model, forecasting 
volatility and evaluation of them) for a sample size of 5000 takes a non-trivial amount of processing time given this 
number of replications.  
9 The likelihood function for a tν  distribution is formulated as follows: 

21 ( 2) 1 (1 )
2 2 2 2 2 ( 2)

t t

t

lnhv v ln v vt logl ln ln ln
v h
ε+ − +

− = Γ − Γ − − − ⋅ +
− ⋅

, where lnΓ(x) denotes the natural logarithm of Γ(x), 

and v the number of degrees of freedom under estimation.   
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We use the strong standard GARCH(1,1) filter to estimate the in-sample 4960 
high-frequency observations produced by a strong standard GARCH(1,1) DGP which is purged of 
periodic variation in its parameters. The same strong standard GARCH(1,1) filter is then 
estimated on the aggregated 2480 observations, the aggregation interval being two 
high-frequency observation periods in length. These estimations are replicated 10000 times for 
each of Parameterisations 1 to 3 under both N(0,1) and t5 driving disturbances. Taken together, 
there are six sets of Monte Carlo simulations that lead to the results summarised in Tables A.1 and 
A.2 in Appendix A, which present the true values and the ML estimates of the strong standard 
GARCH(1,1) filter for the high-frequency and the low-frequency observations respectively. 

Before detailed discussion of results in Tables A.1 and A.2 in Appendix A, it is interesting to 
note that the average biases of the parameter estimates are generally smaller under t5 disturbances 
than under N(0,1) disturbances for both the high-frequency and aggregated low-frequency 
observations.  
 
Discussions of Table A.1 in Appendix A: high-frequency estimates 
 

It is obvious from Table A.1 that, despite significant average biases of the reported 
high-frequency estimates, they are quite close to their true values with both sets of driving 
disturbances. Very few exceptions appear on the estimates of beta and the unconditional kurtosis 
for the t5 cases: 

(a) H
1β  tends to be much more underestimated under Parameterisation 3 than under 

Parameterisation 1, irrespective of the driving disturbances. Since the only difference between 
Parameterisations 1 and 3 is the size of alpha, H

1α  being 0.15 under Parameterisation 1 and 0.05 
under Parameterisation 1, it appears to suggest that beta’s estimate is inclined to be more 
underestimated when the true value of alpha decreases. Since alpha is correctly estimated the 
apparent underestimation of beta under Parameterisation 3 causes the level of integratedness, 

H
1α + H

1β , to be underestimated under Parameterisation 3 to an extent larger than under 
Parameterisation 1. 

(b) The average non-parametric sample estimate for the unconditional kurtosis of the 
standardized high-frequency innovations, ˆHkξ , tends to be significantly underestimated under t5 
disturbances across all parameterisations. We doubt the possibility that estimation biases of the 
parameters of the standard HF GARCH(1,1) filter lead to the downward bias of ˆHkξ  in the t5 cases. 
To see why it is not likely for the biases of the parameter estimates to be the reason, we compare 
the biases of the parameter estimates between under both disturbances in Table A.1. In general, 
the biases of ˆHφ , 1ˆ

Hα , and 1̂
Hβ  in the case of t5 disturbances are slightly smaller than their 

counterparts in the case of N(0,1) disturbances. Under both disturbances, moreover, the biases are 
all practically trivial, although some of them are statistically significant. This finding rules out the 
possibility that estimation biases of the parameters cause the under-estimation of Hkξ  under t5 
disturbances. As a matter of fact, the strong standard GARCH(1,1) filter for the high-frequency 
observations is correctly estimated under both disturbances. It is therefore likely that the unknown 
statistical property of the non-parametric sample estimate of unconditional kurtosis, i.e. ˆHkξ = 

[ 4

1

1 ˆ( )
T

t
tT

ξ
=
∑ ] /

1

1 ˆ[ (
T

t
tT

ξ
=

−∑ t̂ξ )2]2, is responsible for the under-estimation of Hkξ  in the t5 cases even 

though the strong standard GARCH(1,1) filter for the high-frequency observations is correctly 
specified and estimated. In other words, it should be part of the unknown statistical properties of 
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ˆHkξ = [ 4

1

1 ˆ( )
T

t
tT

ξ
=
∑ ] /

1

1 ˆ[ (
T

t
tT

ξ
=

−∑ t̂ξ )2]2 that the larger the fourth moment of the driving disturbances, 

the more is its non-parametric sample estimate smaller than its true value. However, verification 

of the above argument relies on the statistical property of [ 4

1

1 ˆ( )
T

t
tT

ξ
=
∑ ] /

1

1 ˆ[ (
T

t
tT

ξ
=

−∑ t̂ξ )2]2 which is 

not available. 
However, if we look at the estimate of the number of degrees of freedom for the 

high-frequency standardised innovations in the cases of t5 disturbances, i.e. 1̂v , it is very close to 
its true value, 5, across all parameterisations despite the statistically significant but practically 
trivial positive biases. Given that the unconditional kurtosis of a standardised t distribution with v 

degrees of freedom is equal to 3( 2)
4

ν
ν
−
−

, v = 5 corresponds to a kurtosis of 9. Therefore, 1̂ 5v ≈  in 

Table A.1 implies ˆ 9Hkξ ≈ . For example, 1̂v  is 5.04 under all three parameterisations in Table A.1, 

which implies ˆHkξ = 3(5.04 2)
(5.04 4)

−
−

 = 8.77, much closer to its true value, 9, than is the non-parametric 

sample estimate of Hkξ . 
In addition to the two points above, there are some other aspects in Table A.1 worth noting: 
(i) The level of integratedness, H

1α + H
1β , is well estimated under Parameterisation 1 and 2 

under both disturbances. Under Parameterisation 3, although H
1α + H

1β  is significantly 
underestimated, the downward biases under both types of disturbances are only as small as three 
hundredths of the true value in size. In general, therefore, the ML method is able to correctly 
estimate the level of integratedness of a strong GARCH(1,1) process. This result will be used as a 
benchmark, against which the distortion of the estimate of 1

Hα + H
1β  in the context of volatility 

periodicity will be compared. 
(ii) The asymptotic innovation variance implied by the parameter estimates, 2ˆ( )Hσ  = 

1 1

ˆ
ˆˆ(1 )

H

H H

φ
α β− −

, is found to be almost equal to its true value across all three parameterisations and 

the two disturbances. This result signals one of the advantages of using the ML method in 
GARCH model estimation. But note that this might not be the case when the true t-likelihood is 
replaced by the Gaussian likelihood under t5 DGPs. 

(iii) Finally, the fourth moment of the driving disturbances of the DGP does not seem to 
affect the fact that the high-frequency parameters of the GARCH(1,1) filter are accurately 
estimated by the ML method. In fact, the extent to which ˆHφ , 1ˆ

Hα , 1̂
Hβ , 1ˆ

Hα + 1̂
Hβ , and 2ˆ( )Hσ  

are close to their true values is virtually the same across both driving disturbances, as reported in 
Table A.1. This result might be due to the use of the actual likelihood for both disturbances in the 
ML method. However, this might not be the case if we have applied the quasi-likelihood method 
to the t5 cases. In other words, if we assume a Gaussian likelihood for the t5 cases, the parameter 
estimates might not be as accurate as those under the use of the correct t likelihood for the t5 cases.  
 
Discussions of Table A.2 in Appendix A: low-frequency estimates 
 

(i) The results in Table A.2 tend to suggest that, despite the significant average biases, most 
of the low-frequency parameter estimates are close to their true values. These accurate estimates 
justify the usefulness of ML method in estimating the GARCH parameters. However, there appear 
to be some exceptions arising under Parameterisation 3 for both disturbances, where ˆLφ  is 
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obviously upwardly biased from its true value and 1̂
Lβ  (and thus 1ˆ

Lα + 1̂
Lβ ) downwardly biased 

from its true value. These biases could be due to the use of relatively smaller H
1α  under 

Parameterisation 3, 0.05, compared to 0.15 under Parameterisation 1 and 2. The theoretical value 
of 1

Lα  is thus smaller under Parameterisation 3, i.e. 0.038 under N(0,1) and 0.057 under t5. These 
two values are dwarfed, respectively, by 0.126 under N(0,1), and 0.173 under t5 for both 
Parameterisation 1 and 2. Since this fact that a larger downward bias of the beta estimate relates to 
the use of a smaller alpha in the GARCH(1,1) DGP is also observed in Table A.1 for the 
high-frequency estimates, we speculate that a smaller alpha in the GARCH(1,1) DGP will render 
the ML estimation less reliable. One possible explanation for this suggests that it is more difficult 
for the ML to distinguish the long-term variation form the short-term variation in the conditional 
innovation variances when the true alpha of the GARCH(1,1) DGP appears to be smaller. 

(ii) Turning to the obvious upward bias of ˆLφ  from its true values under Parameterisation 3 
for both disturbances, this result should be discussed along with the estimate of the asymptotic 
low-frequency innovation variance, i.e. 2ˆ( )Lσ . It can be seen from Table A.2 that 2ˆ( )Lσ  is almost 
equal to its true value irrespective of the parameterisation and disturbance distribution. The 
accurate estimation of 2( )Lσ  justifies the upward bias of ˆLφ  under Parameterisation 3, which 

offsets the downward bias of 1̂
Lβ . It seems to say that the ML method is always able to capture the 

level of the asymptotic innovation variance of a strong GARCH(1,1) process despite biased 
parameter estimates. The correct estimation of the asymptotic innovation variance by the ML is 
also reflected by the fact that the ratio of 2ˆ( )Lσ  to 2ˆ( )Hσ  being about 2 to 1 across all 
parameterisations with both disturbances corresponds exactly to the ratio of 2( )Lσ  to 2( )Hσ , and 
the aggregation frequency m = 2. 

(iii) It is also interesting to note that the estimate for the level of integratedness of the LF 
GARCH(1,1) model, 1ˆ

Lα + 1̂
Lβ , is obviously much more underestimated relative to those for the 

HF GARCH(1,1) model. This could be caused by the problem of model mis-specification. In 
particular, the aggregated low-frequency observations are no longer a strong GARCH(1,1) 
process, but rather a weak GARCH(1,1) process. It is thus not appropriate to estimate the 
low-frequency observations by a strong GARCH model. However, there are hitherto no 
approaches to estimating a weak GARCH model. One can only use the ML method to give the 
‘best sample-based’ parameterisation of the linear projection of a weak GARCH process. Under 
such a condition of model mis-specification for the low-frequency observations, it is not 
surprising to see the larger biases of the parameters of the LF strong GARCH(1,1) model than 
those of the HF GARCH(1,1) model. 

(iv) Finally, it is worth noting that the value of 2v̂  seems to be in inverse proportion to the 
size of the true H

1α . In particular, 2v̂  is 5.254 under both Parameterisations 1 and 2, where H
1α  is 

set equal to 0.15. Under Parameterisation 3, where H
1α  = 0.05, the value of 2v̂  goes up to 6.475. 

Despite the lack of theoretical value for 2v , 2v̂  given by the strong standard GARCH(1,1) filter 
might be close to the unknown true 2v , since the same filter successfully estimate its 
high-frequency counterpart 1v . Given the formula for the unconditional kurtosis of a standardised 
t distribution with v degrees of freedom above, the smaller the true alpha of a high-frequency 
GARCH(1,1) process, other things equal, the smaller will be the fourth moment of the aggregated 
process standardised by the aggregated GARCH(1,1) model. 

Having analysed the estimation results of the standard GARCH(1,1) model in the 
no-periodicity benchmark condition, the next section will discuss these same issues but in the 
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context of model mis-specification. In other words, we will explore the effects of periodicity in 
the parameters of the GARCH(1,1) DGP on the estimation of both HF and LF strong standard 
GARCH(1,1) models. 
 
3.2 Effects of Volatility Periodicity on Model Estimation of the Mis-Specified GARCH(1,1) 

Filters 
 

To see how the volatility periodicity affects the ML parameter estimates of the mis-specified 
strong standard GARCH(1,1) models, we devise two types of volatility periodicities through 
DGPs 1 and 2. The details of both DGPs and the GARCH models used for the conditional 
variance estimation have been explained in Section 2. Discussions of the simulation results 
reported in Table A.3 in Appendix A will be categorised according to DGPs 1 and 2.  

Since these two DGPs are based upon a two-stage PGARCH(1,1) model, it might be 
informative to examine the true unconditional variance of each stage of a two-stage PGARCH(1,1) 
model in (4a) and (4b). In particular, let 2

( ) 1 ( ) 1 1 ( ) 1
H H H

t s t s t t s t th hφ α ε β− −= + +  denote a high-frequency 
two-stage PGARCH(1,1) model, where s(t) = 1 for odd t and 2 for even t. We have shown in 
Appendix B that the high-frequency unconditional innovation variance is given by 
 

1 2 11 11

11 11 12 12

( )
1 ( )( )

H H H H
H
odd H H H Hh φ φ α β

α β α β
+ +

=
− + +

 for odd t, and (10a) 

2 1 12 12

11 11 12 12

( )
1 ( )( )

H H H H
H
even H H H Hh φ φ α β

α β α β
+ +

=
− + +

 for even t. (10b) 

 
If we aggregate the high-frequency PGARCH(1,1) process given by th = ( )

H
s tφ  + 2

1 ( ) 1
H
s t tα ε −  + 

1 ( ) 1
H
s t thβ −  into a low-frequency process, the aggregation interval being two high-frequency 

observation periods in length. Under the assumption of i.i.d. high-frequency driving disturbances, 
the unconditional variance for the aggregated innovations, λε , is simply the sum of H

oddh  and H
evenh . 

That is, 

hλ = H
oddh  + H

evenh = 1 12 12 2 11 11

11 11 12 12

(1 ) (1 )
1 ( )( )

H H H H H H

H H H H

φ α β φ α β
α β α β

+ + + + +
− + +

. (11) 

In passing, note that the aggregated low-frequency process, λε , is covariance stationary as 
long as 0≤ 11 11 12 12( )( )H H H Hα β α β+ + <1. We refer to BG (1996) for proof. An implication of this 
argument is that either 11 11

H Hα β+  (the level of integratedness for stage one), or 12 12
H Hα β+  (the level 

of integratedness for stage two) can be larger than 1 as long as their product falls between 0 and 1.  
Despite the lack of analytical results10 for the parameters of a PGARCH(1,1) process under 

temporal aggregation, the formula for hλ  in (11) tends to suggest that: 
(a)  the aggregated process is a weak GARCH(1,1) process,                                                    (12a) 
(b) following (a), the aggregated intercept (2)

Lφ  is equal to 1
Hφ (1+ 12

Hα + 12
Hβ ) + 2

Hφ (1+ 11
Hα + 11

Hβ ),                       

                                                                                                               (12b) 

and 

(c) following (a), 

                                                 
10 The DN aggregation theory does not apply to a periodic-GARCH (or PGARCH) process, albeit it is possible to 
extend the theory to a PGARCH version. 
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the level of integratedness 1(2)
Lα + 1(2)

Lβ  of the aggregated low-frequency weak GARCH(1,1) 

process is equal to ( 11
Hα + 11

Hβ ) ( 12
Hα + 12

Hβ ).                                                                                 (12c) 

Argument (12a) above might be a straightforward result of the fact that we set the length of 
the aggregation interval equal to the length of each periodic cycle of the high-frequency 
PGARCH(1,1) DGPs. That is, the aggregated observations do not show any periodicity in the 
parameters of the GARCH specification governing their conditional innovation variances. We 
will examine the validity of arguments (12b) and (12c) above via our simulation results for DGPs 
1 and 2 as reported in Table A.3 below. 
 
Discussions of Table A.3 in Appendix A: 

 
Results of the cases for DGPs 1 and 2 in Table A.3 tend to suggest that the Monte Carlo 

standard deviations of the high-frequency parameter estimates and the implied low-frequency 
parameters are obviously larger than those of the low-frequency parameter estimates. For 
example, the standard deviation for ˆHφ  is 0.005, and 0.016 for (2)

DNφ , whereas the standard 

deviation for (2)
ˆLφ  is 0.035 in case 1. This finding might be explained by the number of 

observations used for the model estimation. In particular, 4960 observations are used for the 
in-sample estimation of the HF standard GARCH(1,1) filter, contrasting with the 2480 
observations used for the in-sample estimation of the LF standard GARCH(1,1) filter. Intuitively, 
the more data are estimated by ML in each replication, the smaller will be the variations of the 
model parameter estimates across replications. Since the parameters of the aggregated 
low-frequency weak GARCH(1,1) model are implied by the parameter estimates of the HF strong 
GARCH(1,1) model which are based on the 4960 observations, it is not surprising to see the 
smaller standard deviation of (2)

DNφ  than of (2)
ˆLφ . Similar results are found in cases 2, 3, and 4, and 

for the estimates of alpha, beta, number of degrees of freedom, unconditional innovation variance 
implied by the parameter estimates. 
 
a. Impacts on the Average ML Estimated Intercepts of the Strong Standard GARCH(1,1) Model 

for both HF and LF Observations 
 

(i) ˆHφ : In cases 1 and 3, where DGP 1 in (4a) is employed to generate a two-stage 

periodicity in the intercept Hφ , the value of ˆHφ  of the mis-specified HF GARCH(1,1) model is 
found to be 0.3, a value equal to the average of the true Hφ  of the two stages, 0.05 and 0.01. This 
result is indicative that the ML method tends to take equal account of the high intercept (and thus 
the high unconditional innovation variance) in stage 1 and the low intercept (and thus the low 
unconditional innovation variance) in stage 2, when maximising the likelihood. Since this fact is 
observed in cases of both 1 (N(0,1) disturbances) and 3 (t5 disturbances), it suggests that the size 
of the fourth moment of the driving disturbances does not seem to play a role in the ML estimation 
of the intercept of the mis-specified HF GARCH(1,1) model. 

Turning to cases 2 and 4, where DGP 2 in (4b) is used to generate two-stage periodicity in the 
parameter alpha 1

Hα , the estimated ˆHφ  is found to be 0.052 in both cases. This estimate is very 
close to its true values across the two stages, i.e. 1

Hφ  = 2
Hφ  = Hφ = 0.05. It appears to suggest that, 

provided that the intercept is not mis-specified in the standard GARCH(1,1) model, the ML 
method provides accurate intercept estimate in that mis-specification in the alpha parameter does 
not cause to bias of the intercept estimate. 
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Also, since the PGARCH(1,1) DGPs in (4a) and (4b) consist of Parameterisations 1 and 2 or 
of Parameterisations 1 and 3 in Table 1, it might be interesting to compare the values of ˆHφ  in 
Panel A of Table A.3 to its counterparts in Table A.1 in Appendix A. For example, DGP 1 used in 
cases 1 and 3 consists of Parameterisations 1 (for stage 1) and 2 (for stage 2) in Table 1 above, we 
expect to observe the intercept estimate, ˆHφ , of the mis-specified GARCH(1,1) filter to be the 

average of ˆHφ  under Parameterisation 1, 0.051, and ˆHφ  under Parameterisation 2, 0.0102. 

Indeed, ˆHφ  is 0.03 in case 1, virtually equal to the average of 0.051 and 0.0102. Similar results 
can be observed with cases 2, 3, and 4. In line with the argument above, it tends to indicate that the 
ML method values equally the sizes of the true intercept of each stage of the PGARCH(1,1) DGP 
when estimating the mis-specified standard GARCH(1,1) filter. 

(ii) (2)
ˆLφ : We have argued above that the aggregated observations might follow a standard 

weak GARCH(1,1) process. In this context, the standard LF strong GARCH(1,1) model might not 
be regarded mis-specified although the ML method is not tailored for estimating a weak GARCH 
process. However, DN have documented that the ML estimates of a weak GARCH process are not 
biased from their true values to a significant extent. As a result, the values of (2)

ˆLφ , 1(2)ˆ Lα , and 1(2)
ˆ Lβ  

are expected to be close to their true values. 
In cases 1 and 3 using DGP 1 in (4a), where 1

Hφ  = 0.05, 2
Hφ  = 0.01, 11

Hα  = 12
Hα  = 0.15, 11

Hβ  = 

12
Hβ  = 0.7, the formula in (11) gives  

(2)
Lh  = 1 12 12 2 11 11

11 11 12 12

(1 ) (1 )
1 ( )( )

H H H H H H

H H H H

φ α β φ α β
α β α β

+ + + + +
− + +

= 0.05(1 0.15 0.7) 0.01(1 0.15 0.7)
1 (0.15 0.7)(0.15 0.7)
+ + + + +
− + +

 

= 0.111
1 0.7225−

 = 0.4. 

The vicinity of the numerator, 0.111, to the estimated (2)
ˆLφ , 0.117, in cases 1 and 3 reported in 

Panel B of Table A.3 justifies our the argument (12b). That is, the true (2)
Lφ  of the aggregated weak 

GARCH(1,1) process might well be equal to 1
Hφ (1+ 12

Hα + 12
Hβ )+ 2

Hφ (1+ 11
Hα + 11

Hβ ). 
To verify the argument in (12b) in the context of cases 2 and 4 using DGP 2 in (4b), where 

1
Hφ  = 2

Hφ  = 0.05, 11
Hα  = 0.15, 12

Hα  = 0.05, and 11
Hβ  = 12

Hβ  = 0.7. Formula (11) therefore gives hλ  

=  0.05(1 0.05 0.7) 0.05(1 0.15 0.7)
1 (0.15 0.7)(0.05 0.7)
+ + + + +
− + +

 = 0.18
1 0.6375−

 = 0.49655. Referring to Panel B of 

Table A.3, the numerator 0.18 above is also close to the estimated (2)
ˆLφ , 0.195 (case 3) and 0.188 

(case 4). As a result, the argument in (12b) is more than likely to be true. 
(iii) (2)

DNφ : The average aggregated intercept implied by ˆHφ  of the mis-specified standard HF 

strong GARCH(1,1) model is seen to be close to (2)
ˆLφ  in all four cases discussed above, i.e. cases 1, 

2, 3, and 4: see Panel B of Table A.3 in Appendix A. Table 3 below compares the values of 

(2)
DNφ and (2)

ˆLφ  to those of 1
Hφ (1+ 12

Hα + 12
Hβ )+ 2

Hφ (1+ 11
Hα + 11

Hβ ), denoted (2)
Lφ  hereafter, in the four 

cases: 
Table 3: Comparison of the values of (2)

ˆLφ  and (2)
DNφ  to (2)

Lφ  

Case No (DGP No, Disturbance) (2)
ˆLφ  (2)

DNφ  
(2)
Lφ = 1

Hφ (1+ 12
Hα + 12

Hβ )+

2
Hφ (1+ 11

Hα + 11
Hβ ) 
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1 (DGP 1, N(0,1)) 0.117 (0.035) 0.112 (0.016) 0.111 
2 (DGP 2, N(0,1)) 0.195 (0.082) 0.186 (0.036) 0.18 
3 (DGP 1, t5) 0.117 (0.027) 0.112 (0.016) 0.111 
4 (DGP 2, t5) 0.188 (0.059) 0.185 (0.035) 0.18 

Obviously, the values of (2)
DNφ  in all four cases above tend to be close to the values of (2)

Lφ  

more than are the values of (2)
ˆLφ . The implication of this result will be discussed when we move to 

the results of the estimated level of integratedness of the HF GARCH(1,1) filter. 
 
b. Impacts on the Average ML Estimated Dynamics of the Strong Standard GARCH(1,1) Model 

for both HF and LF Observations 
 

(i) 1ˆ
Hα (reported in Panel A) and 1̂

Hβ (reported in Panel B): By similar argument to the 

discussions of 1̂
Hφ , moreover, we expect the values of 1ˆ

Hα (or 1̂
Hβ ) to be equal to the average of 

the two 1ˆ
Hα (or 1̂

Hβ ) under Parameterisation 1 and 2 (for cases 1 and 3) or 1 and 3 (for cases 2 and 

4) in Table A.1 in appendix A. In particular, the value of 1ˆ
Hα  is 0.149 in case 1, which is almost 

the average of the values of 1ˆ
Hα , 0.15 under Parameterisation 1 and 0.15 under Parameterisation 2. 

In cases 2, 3, and 4, this is also true. 
Similar results are observed with 1̂

Hβ . For instance, 1̂
Hβ  is 0.692 in case 4 (under DGP 2, 

made up of Parameterisation 1 and 3 with t5 disturbances) as reported in Panel A of Table A.3, 
which is very close to the average of 0.698 under Parameterisation 1 and 0.681 under 
Parameterisation 3 in Table A.1. The values of 1̂

Hβ  in cases 1, 2, and 3 are also equally weighted 
mixtures of its values under Parameterisation 1 and 2 or 1 and 3, depending on which case is 
discussed. 

The values of 1ˆ
Hα  and 1̂

Hβ  can also be discussed from another perspective by comparing 
them to their true values. In particular, in cases 1 and 3 using DGP 1, where 1

Hφ  = 0.05, 2
Hφ  = 0.01, 

11
Hα  = 12

Hα  = 0.15, 11
Hβ  = 12

Hβ  = 0.7, the value of 1ˆ
Hα  is 0.149 (in case 1) and 0.15 (in case 3), 

which is almost equal to or equal to the true 1
Hα ( = 11

Hα  = 12
Hα  = 0.15 ). Moreover, the value of 

1̂
Hβ  is 0.698 (in case 1) and 0.699 (in case 3), both being almost equal to the true 1

Hβ  
(= 11

Hβ = 12
Hβ = 0.7). Taken together, periodicity in the intercept of a PGARCH(1,1) process does 

not seem to deviate the dynamics estimates of the mis-specified strong standard GARCH(1,1) 
model from their true values. This result might well be due to the nature of the model 
mis-specification, that is: the strong standard GARCH(1,1) filter used to estimate a PGARCH(1,1) 
process of a two-stage periodicity in the intercept fails to correctly specify the intercept of the 
PGARCH(1,1) process only, but not its dynamics. It is known that the intercept decides only the 
level of the unconditional variance of a GARCH process, whereas the dynamics parameters 
characterise how the conditional variance of a GARCH process changes through time. As a result, 
it is not surprising to observe that the dynamics estimates of the standard GARCH(1,1) filter is the 
same as their true values despite that the filter does not capture the variation in the intercept of a 
PGARCH(1,1) DGP. 

Turning to cases 2 and 4, where DGP 2 ( 1
Hφ  = 2

Hφ  = 0.05, 11
Hα  = 0.15, 12

Hα  = 0.05, and 11
Hβ  = 

12
Hβ  = 0.7) is used, the value of 1ˆ

Hα  is 0.1 (in case 2) and 0.098 (in case 4), which is equal to the 
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average of 11
Hα  and 12

Hα . This result tends to suggest that the ML method values equally the sizes 
of 11

Hα  and 12
Hα  when maximising the likelihood of the mis-specified strong standard GARCH(1,1) 

innovations. Moreover, the value of 1̂
Hβ  is 0.69 (in case 2) and 0.692 (in case 4), which are both 

close to their true value 1
Hβ (=0.7). It indicates that periodicity in the parameter alpha of a 

PGARCH(1,1) DGP does not cause a deviation in the beta estimate of the mis-specified 
GARCH(1,1) filter from its true value. 

Another point worth noting is that the fourth moment of the driving disturbances of the 
underlying PGARCH(1,1) DGP does not seem to affect the ML estimation of the dynamics of the 
mis-specified standard GARCH(1,1) filter. To understand this, we can look at the values of 1ˆ

Hα  

and 1̂
Hβ  in cases 1 (N(0,1) disturbances) and 3 (t5 disturbances), for example. Both 1ˆ

Hα and 1̂
Hβ  

are almost unchanged across the two cases. This is also observed in cases 2 (N(0,1) disturbances) 
and 4 (t5 disturbances). 

(ii) 1(2)ˆ Lα : 1(2)ˆ Lα  is 0.124 in case 1 (N(0,1)), smaller than the high-frequency true 1
Hα , 0.15, 

whereas 1(2)ˆ Lα  is 0.161, larger than 0.15 in case 3 (t5). Similarly, 1(2)ˆ Lα  is 0.085 in case 2 (N(0,1)), 

smaller than the average of 11
Hα =0.15 and 12

Hα =0.05, 0.1, whereas 1(2)ˆ Lα  is 0.11 in case 4 (t5), 

larger than 0.1. The value of 1(2)ˆ Lα  is obviously dependent on the fourth moment of the driving 
disturbances, which coincides with the DN aggregation formulae for the standard weak 
GARCH(1,1) process. It indicates that any development of the analytical results for the temporal 
aggregation of a weak PGARCH(1,1) process should also take into account the unconditional 
kurtosis of the driving disturbances. 

(iii) 1(2)ˆ Lα  vs. 1(2)
DNα  and  1(2)

ˆ Lβ  vs. 1(2)
DNβ : From Table A.3, the values of 1(2)ˆ Lα  and 1(2)

ˆ Lβ  are 

close to the values of 1(2)
DNα  and 1(2)

DNβ  respectively under both DGPs 1 and 2 (cases 1, 2, 3, and 4). 

The differences between 1(2)ˆ Lα  and 1(2)
DNα , and between 1(2)

ˆ Lβ  and 1(2)
DNβ  are not larger than those 

observed in the standard no-periodicity experiments discussed in Section 6.3.1: see discussions of 
Table A.2. Given the argument in (12a) that the aggregated observations are characterised by a 
standard weak GARCH(1,1) process, these differences should be attributed only to the errors 
caused by the application of the ML method to estimating a weak GARCH(1,1) process. 
 
c. Impacts on the Average ML Estimated levels of Integratedness of the Strong Standard 

GARCH(1,1) Model for both HF and LF Observations: 
 

(i) 1̂
Hα + 1̂

Hβ : the value of 1̂
Hα + 1̂

Hβ  is expected to be equal to the average of the values of 

1̂
Hα + 1̂

Hβ  under Parameterisations 1 and 2 (for cases 1 and 3) or Parameterisations 1 and 3 (for 

cases 2 and 4). In fact, 1̂
Hα + 1̂

Hβ  is 0.790 in case 2 reported in Panel A of Table A.3, whereas 

1̂
Hα + 1̂

Hβ  is 0.847 under Parameterisation 1 and 0.726 under Parameterisation 3 in Table A.1 with 
the N(0,1) disturbances. 0.79 is roughly the average of 0.847 and 0.726, which echoes our 
expectation of the value of 1̂

Hα + 1̂
Hβ  in case 2. For cases 1, 3, and 4, the same results are observed. 

It tends to suggest that periodicity in the intercept or parameter alpha of the underlying two-stage 
PGARCH(1,1) DGP does not cause the ML estimates of the levels of integratedness of the 
mis-specified strong standard GARCH(1,1) filter to deviate from the average of their true values 
of the two stages. 
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(ii) 1( 2 ) 1( 2 )
ˆˆ L Lα β+ : To discuss the values of 1( 2 ) 1( 2 )

ˆˆ L Lα β+  in the four cases, we need to refer to 

the argument in (12c), that is, the true level of integratedness 1(2)
Lα + 1(2)

Lβ  of the aggregated 

low-frequency weak GARCH(1,1) process is equal to ( 11
Hα + 11

Hβ )( 12
Hα + 12

Hβ ). To facilitate our 

discussions, we compare the values of 1( 2 ) 1( 2 )
ˆˆ L Lα β+  and 1(2) 1(2)

DN DNα β+  to the values of 

( 11
Hα + 11

Hβ )( 12
Hα + 12

Hβ ) (termed 1( 2 ) 1( 2 )
L Lα β+ , hereafter) in Table 4 below. 

 
Table 4: Comparison of the values of 1( 2 ) 1( 2 )

ˆˆ L Lα β+  and 1(2) 1(2)
DN DNα β+  to 1( 2 ) 1( 2 )

L Lα β+  

Case No (DGP No, Disturbance) 1( 2 ) 1( 2 )
ˆˆ L Lα β+ 1(2) 1(2)

DN DNα β+  
1( 2 ) 1( 2 )
L Lα β+ = 

( 11
Hα + 11

Hβ )( 12
Hα + 12

Hβ )

1 (DGP 1, N(0,1)) 0.707 (0.089) 0.719 (0.042) 0.7225 
2 (DGP 2, N(0,1)) 0.606 (0.167) 0.626 (0.072) 0.6375 
3 (DGP 1, t5) 0.705 (0.069) 0.721 (0.042) 0.7225 
4 (DGP 2, t5) 0.619 (0.121) 0.627 (0.070) 0.6375 

Note: The sample standard deviations for N=10000 estimates are reported in parentheses. 
 

Despite the fact that the values of 1( 2 ) 1( 2 )
ˆˆ L Lα β+  are slightly smaller than 1(2)

Lα + 1( 2 )
Lβ  

throughout all four cases, the differences might be explained by the expedient use of the ML 
method to estimate the aggregated weak GARCH(1,1) process. Taking account of the effects of 
the ML method applied to the estimation of a weak GARCH(1,1) process, the values of 

1( 2 ) 1( 2 )
ˆˆ L Lα β+  are indeed very close to 1( 2 ) 1( 2 )

L Lα β+  in all four cases. Is this a coincidence? The 
answer is probably no if the argument in (12a) that the aggregate of a two-stage PGARCH(1,1) 
process turns into a weak GARCH(1,1) process is true. Given this argument, using the strong 
standard GARCH(1,1) model to filter the aggregated process is appropriate and that is why the 
values of 1( 2 ) 1( 2 )

ˆˆ L Lα β+  of the strong standard GARCH(1,1) model are close to the true values of 

the dynamics of the aggregated process, i.e. 1( 2 ) 1( 2 )
L Lα β+  = ( 11

Hα + 11
Hβ )( 12

Hα + 12
Hβ ), in all four cases. 

The numerically trivial biases of 1( 2 ) 1( 2 )
ˆˆ L Lα β+  from 1( 2 ) 1( 2 )

L Lα β+  might come from the problem 
caused by applying the ML method to the parameter estimation of a weak GARCH(1,1) process. 

Moreover, the average low-frequency level of integratedness 1(2) 1(2)
DN DNα β+ , implied by the 

parameter estimates of the mis-specified HF strong GARCH(1,1) filter, is also found to be close 
to 1(2)

Lα + 1( 2 )
Lβ  across the four cases. If we consider this result together with the finding that the 

values of both (2)
ˆLφ and (2)

DNφ  are close to that of (2)
Lφ  in all four cases, argument (12a) can be 

further strengthened by the following argument: 
 
a two-stage strong PGARCH(1,1) process will turn into a weak GARCH(1,1) process upon 
temporal aggregation, the aggregation interval being two original (or high-frequency) 
observation periods in length, and this aggregated weak GARCH(1,1) process is simply the one 
obtained by the aggregation of the ML estimated mis-specified GARCH(1,1) model filtering the 
two-stage PGARCH(1,1) process. 
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d. Impacts on the Average Estimates of the Numbers of Degrees of Freedom for the 
Standardised Innovations of the Strong Standard GARCH(1,1) Model for both HF and LF 
Observations: 

 
Note that these discussions only involve cases with t5 driving disturbances since the number 

of degrees of freedom is also a parameter under estimation in these cases. The values of 1̂v  and 2v̂  
are therefore not available in cases 1 and 2 of Panel A of Table A.3, where the N(0,1) driving 
disturbances are used. 

(i) 1̂v : The value of 1̂v  is 5.011 in case 3 (see Panel B of Table A.3), whereas it is 5.04 under 
both Parameterisations 1 and 2 (see Table A.1). Also, the value of 1̂v  in case 4 is 4.996 (see Panel 
B of Table A.3), whereas it is 5.04 under both Parameterisations 1 and 3 (see Table A.1). Both 
results suggest that periodicity in the intercept and alpha of the PGARCH(1,1)-t5 DGP does not 
lead to a biased estimate of the number of degrees of freedom of the mis-specified standard 
GARCH(1,1)-t filter. 

(ii) 2v̂ : Unfortunately, analytical results for the true number of degrees of freedom of the 
standardised aggregated innovations, 2v  are not available. We thus cannot compare 2v̂  to its true 
value 2v . However, we still can compare the values of 2v̂  under DGP 1 (case 3) and DGP 2 (case 
4) to their benchmark values under the standard GARCH(1,1) DGP reported in Table 6.6. In 
particular, 2v̂  is 5.136 under DGP 1 in case 3, a value close to its counterparts, 5.254 under both 
Parameterisations 1 and 2, which together form DGP 1. The periodicity in the intercept under 
DGP 1 does not seem to cause much deviation in the value of 2v̂  for the LF GARCH(1,1) 
standardised innovations relative to its benchmarks of the two stages of the periodic cycle. The 
fixed dynamics parameters across the two stages under DGP 1 might be responsible for this result. 
On the other hand, 2v̂  is 6.188 under DGP 2 in case 4, a value slightly larger than the average of 

2v̂ = 5.254 under Parameterisation 1 and 2v̂ = 6.475 under Parameterisation 3 of the standard 
GARCH(1,1) DGP. We have found in Section 6.3.1 that the number of degrees of freedom for the 
aggregated low-frequency observations is in inverse proportion to the size of the true alpha of the 
high-frequency GARCH(1,1) DGP. The value of 2v̂  falling between its benchmarks of the two 
stages thus might be a result of the alternating stages of large 11

Hα  = 0.15 and small 12
Hα  = 0.05, 

under DGP 2. 
 
e. Impacts on the Average Unconditional Innovation Variances Implied by the Parameter 

Estimates of the Strong Standard GARCH(1,1) Model for both HF and LF Observations 
 

In Appendix B, we have shown the derivation of the formulae for the unconditional 
innovation variance of each stage of the periodic cycle of a two-stage PGARCH(1,1) process in 
(10a), (10b), and (11). The discussion of this part will be based on these formulae. 

(i) 2ˆ( )Hσ : To facilitate the discussion of the values of 2ˆ( )Hσ  in the context of volatility 

periodicity, we compare the values of 2ˆ( )Hσ  to the values of H
oddh , given by (10a), and H

evenh , 
given by (10b) in Table 5 below. 
 

Table 5: Comparison of the values of 2ˆ( )Hσ  to the values of H
oddh  and H

evenh  
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Case No (DGP No, Disturbance) 2ˆ( )Hσ  
H
oddh H

evenh  

1 (DGP 1, N(0,1)) 0.200 (0.009) 0.2108 0.1892 
2 (DGP 2, N(0,1)) 0.248 (0.008) 0.2552 0.2414 
3 (DGP 1, t5) 0.201 (0.015) 0.2108 0.1892 
4 (DGP 2, t5) 0.249 (0.013) 0.2552 0.2414 

Note: The sample standard deviations for N=10000 estimates are reported in parentheses. 
 

Interestingly, the value of 2ˆ( )Hσ  is equal to the average of the values of H
oddh  and H

evenh  in all 
four cases. It follows from DN’s aggregation formulae that the unconditional variance of the 
aggregated innovations, 2

( )( )L
mσ , of a weak GARCH(1,1) process is equal to the number of 

high-frequency periods within each aggregation interval, m, times the unconditional variance of 
the high-frequency innovations, 2( )Hσ . In the context of an aggregation frequency of 2, the 
theory simply suggests that, if we aggregated the high-frequency innovations filtered by the 
mis-specified GARCH(1,1) model into their low-frequency counterparts, we would expect to see 
the unconditional variance of the aggregated innovations equal to 2 2ˆ( )Hσ . Coincidently, 2 2ˆ( )Hσ  
is just equal to the sum of H

oddh  and H
evenh  according to the results in Table 5 above. Moreover, we 

have shown in (11) that the unconditional variance of the aggregated weak GARCH(1,1) 

innovations, (2)
Lh , is equal to H

oddh  + H
evenh  = 1 12 12 2 11 11

11 11 12 12

(1 ) (1 )
1 ( )( )

H H H H H H

H H H H

φ α β φ α β
α β α β

+ + + + +
− + +

. Consequently, 

2 2ˆ( )Hσ  should also be equal to (2)
Lh . An implication of this result is that a PGARCH(1,1) process 

and a GARCH(1,1) process with parameters from the ML estimates of a strong standard 
GARCH(1,1) model filtering the PGARCH(1,1) process will aggregate into the same 
low-frequency weak GARCH(1,1) process under an aggregation frequency of 2. We suspect that 
this might also be the case for the integer aggregation frequencies larger than 2. 

(ii) 2
(2)ˆ( )Lσ  and 2

(2)( )DNσ : To strengthen our point above, we compare the unconditional 
variance of the aggregated innovations implied by the LF GARCH(1,1) parameter estimates, 

2
(2)ˆ( )Lσ , to its counterpart implied by the parameters of the calculated aggregated GARCH(1,1) 

model and to (2)
Lh  from (11) in Table 6 below. 

 
Table 6: Comparison of the values of 2ˆ( )Hσ  to the values of H

oddh  and H
evenh  

Case No (DGP No, Disturbance) 2
(2)ˆ( )Lσ  2

(2)( )DNσ  (2)
Lh = H

oddh  + H
evenh  

1 (DGP 1, N(0,1)) 0.400 (0.020) 0.400 (0.017) 0.4 
2 (DGP 2, N(0,1)) 0.496 (0.019) 0.496 (0.015) 0.4966 
3 (DGP 1, t5) 0.399 (0.033) 0.402 (0.031) 0.4 
4 (DGP 2, t5) 0.493 (0.029) 0.497 (0.027) 0.4966 

Note: The sample standard deviations for N=10000 estimates are reported in parentheses. 
 

Obviously, the values of 2
(2)ˆ( )Lσ , 2

(2)( )DNσ , and (2)
Lh are extremely close to one another in all 

four cases. The fact that 2
(2)ˆ( )Lσ ≈ 2

(2)( )DNσ  along with 1( 2 ) 1( 2 )
ˆˆ L Lα β+ ≈ 1(2) 1(2)

DN DNα β+  and (2)
ˆLφ ≈ (2)

DNφ  
provides support for our argument in (12a) that the aggregated observations are governed by a 
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weak GARCH(1,1) process which does not show any periodicity in the parameters. The rationale 
behind this is that the aggregated low-frequency model implied by the ML estimates of the 
mis-specified HF GARCH(1,1) model via the DN formulae is a weak GARCH(1,1) free of 
periodicity. Therefore, if we use a GARCH(1,1) model, though ‘strong’ in definition, to estimate 
the aggregated low-frequency observations, and we end up with parameter estimates and the 
resulting unconditional innovation variance which are similar in size to those of the 
aforementioned aggregated weak GARCH(1,1) model, it is more than likely that the aggregated 
observations are free of periodicity, i.e. they are no longer governed by a PGARCH(1,1) process, 
but rather by a GARCH(1,1) process. 

Following the argument above, moreover, the strong standard GARCH(1,1) filter for the 
low-frequency observations is not mis-specified in its parameter settings, though still 
mis-specified in assuming i.i.d. innovations11. The fact that 2

(2)ˆ( )Lσ ≈ (2)
Lh  in Table 6 above thus 

tends to certify the correctness of the formula for (2)
Lh  in (11). 

 
f. Impacts on the Average Sample Non-Parametric Estimates for the Unconditional Kurtoses of 
the High-Frequency Innovations Standardised by the Strong Standard GARCH(1,1) Filter, and 
of the Low-frequency Innovations Standardised by the Strong Standard GARCH(1,1) Filter 
and by the Aggregated Weak GARCH(1,1) Model 
 

(i) ˆHkξ : Comparison of the values of ˆHkξ  in Panel A of Table A.3 to the values of ˆHkξ  under 
Parameterisations 1 to 3 in Table A.1 is made in Table 7 below. 
Table 7: Comparison of the values of ˆHkξ  in cases 1, 2, 3, and 4 of Table A.3 to their 

counterparts under Parameterisations 1 to 3 in Table A.1 

PGARCH(1,1) DGPs ˆHkξ  under Standard GARCH(1,1) DGPs 

Parameterisation 1 Parameterisation 2 Parameterisation 3
Case No (DGP No, 

Disturbance) 
ˆHkξ  

tξ ~ N(0,1) tξ ~ 
t5  

tξ ~ 
N(0,1) 

tξ ~  
t5 

tξ ~ 
N(0,1) 

tξ ~ 
t5 

1 (DGP 1, N(0,1)) 3.012 
(0.071)

2.998 
(0.070)  2.998 

(0.070)    

2 (DGP 2, N(0,1)) 3.017 
(0.072)

2.998 
(0.070)    2.998 

(0.070)  

3 (DGP 1, t5) 
7.819 

(4.514)  7.798
(4.593)  7.799 

(4.592)   

4 (DGP 2, t5) 
7.861 

(4.709)  7.798
(4.593)    7.797 

(4.598)
Note: The sample standard deviations for N = 10000 estimates are reported in parentheses 
 

Results in Table 7 above tend to suggest that the periodicity in the intercept or alpha of the 
two-stage strong PGARCH(1,1) DGPs does not seem to affect the estimation of the true Hkξ . For 
example, in case 1 where DGP 1 and the N(0,1) driving disturbances are employed, the average 
unconditional kurtosis estimate of the high-frequency innovations standardised by the 
mis-specified strong GARCH(1,1) filter, ˆHkξ , is 3.012. In the standard context of no periodicity, 

                                                 
11 If the aggregated low-frequency observations do follow a standard GARCH(1,1) process, it must be a weak 
GARCH(1,1) model given the DN aggregation theory. Therefore the strong GARCH(1,1) model used to estimate the 
low-frequency observations under the ML method is doomed to be mis-specified since it assumes that the innovations 
are i.i.d. 
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on the other hand, the values of ˆHkξ  under Parameterisation 1 and 2, which together constitute 
DGP 1, are both 2.998. 3.012 and 2.998 are very close to each other and are almost equal to the 
true value, 3. The same result is observed with the other three cases. 

However, there is another point worth noting. That is, the fourth moment of the driving 
disturbances used in the strong PGARCH(1,1) DGP seems to have impacts on the accuracy of ˆHkξ  

and the Monte Carlo standard deviation of ˆHkξ . The values of ˆHkξ  reported in Table 7 under both 
the strong PGARCH(1,1) DGPs and the no-periodicity strong standard GARCH(1,1) DGPs are 
close to their true values, 3, in the cases of N(0,1) driving disturbances. Under t5 disturbances, on 
the contrary, the sizes of ˆHkξ  are obviously smaller than their true value, Hkξ = 9. Refer to part (b) 
of the discussion of Table A.1 for explanation of this result. 

Also, the Monte Carlo standard deviations of ˆHkξ  are trivially small in the N(0,1) cases, 

whereas their counterparts in the t5 cases are large relative to the values of ˆHkξ  themselves. This 
tends to suggest that large fourth moments of the driving disturbances will make the Monte Carlo 
results of ˆHkξ  less reliable.  

(ii) 
( 2)

ˆLkξ  and 
( 2)

ˆDNkξ : As reported in Panel B of Table A.3, it might be surprising to observe that 

the values of 
( 2)

ˆLkξ  and 
( 2 )

ˆDNkξ  are very close to each other in all four cases. Following the same 
argument in point (ii) of the discussions in part e, this result tends to verify our speculation: 
argument (a) in (12a). 
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4 Concluding remarks 
 

We have shown the formulae for the unconditional innovation variance of each of the two 
stages of a PGARCH(1,1) DGP. According to the formulae in (10a) and (10b), the two-stage 
periodic cycle in the intercept or alpha parameter of a PGARCH(1,1) DGP implies the two-stage 
variation in the unconditional innovation variance. Moreover, a straightforward implication of 
these formulae is the formula for the true unconditional variance of the aggregated innovations 
λε , i.e. hλ  in (11). 

The formula for hλ  in (11) tends to suggest two points. First of all, whilst the conditional 
variance of the high-frequency observations generated by the two-stage strong PGARCH(1,1) 
DGP demonstrate periodicity in the intercept or alpha parameter, the aggregated low-frequency 
observations follow a non-periodic weak GARCH(1,1) process. Second, following the argument 
above, the true intercept of the aggregated weak GARCH(1,1) process is equal to 

1
Hφ (1+ 12

Hα + 12
Hβ )+ 2

Hφ (1+ 11
Hα + 11

Hβ ), and its true level of integratedness is specified by 
( 11

Hα + 11
Hβ )( 12

Hα + 12
Hβ ). The first point is extended, moreover, by our finding that the aggregated 

weak GARCH(1,1) process is identical to the one obtained by temporal aggregation, in the DN 
sense, of the ML estimated mis-specified strong GARCH(1,1) model filtering the two-stage 
PGARCH(1,1) process. All these arguments above are strongly supported by our simulation 
results. 

Interestingly, the periodicity in the intercept and alpha parameter of our two-stage or 
five-stage PGARCH(1,1) DGPs does not seem to have any special impacts on the model 
estimation of the mis-specified strong standard GARCH(1,1) filter for the high-frequency 
observations. The intercept estimate of the mis-specified HF GARCH(1,1) filter is simply equal 
to the average of the true intercepts of the two stages under DGP 1 or of the five stages under DGP 
3. Similarly, the alpha estimate is equal to the average of the true alpha’s of the two stages under 
DGP 2 or of the five stages under DGP 4. Moreover, the periodicity does not have impacts at all 
on the strong standard GARCH(1,1) filter for the aggregated low-frequency observations, a result 
of the first point above. Finally, these findings seem to be robust to the fourth moment of the 
driving disturbances. 
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Appendix A 

Table A.1: GARCH(1,1) parameterisations for the high-frequency DGP and their ML 
estimates 

Driving Disturbances: 
H
tξ ~ N(0,1) H

tξ ~ t5 

Parameterisation: Parameterisation: 

High-Frequency 
Estimation 

1 2 3 1 2 3 
Hφ  0.05 0.01 0.05 0.05 0.01 0.05 

ˆHφ  
0.051 

(0.008) 
[0.001**] 

0.0102 
(0.002) 

[0.0002**] 

0.055 
(0.025) 

[0.005**] 

0.051 
(0.008) 

[0.001**]

0.0101 
(0.002) 

[0.0001**] 

0.054 
(0.021) 

[0.004**]
H

1α  0.15 0.15 0.05 0.15 0.15 0.05 

1ˆ
Hα  

0.15 
(0.016) 

[0] 

0.15 
(0.016) 

[0] 

0.051 
(0.014) 

[0.001**] 

0.15 
(0.019) 

[0] 

0.15 
(0.019) 

[0] 

0.051 
(0.015) 

[0.001**]
H

1β  0.7 0.7 0.7 0.7 0.7 0.7 

1̂
Hβ  

0.697 
(0.034) 

[-0.003**] 

0.697 
(0.034) 

[-0.003**] 

0.675 
(0.132) 

[-0.025**] 

0.698 
(0.035) 

[-0.002**]

0.698 
(0.035) 

[-0.002**] 

0.681 
(0.115) 

[-0.019**]
H

1α + H
1β  0.85 0.85 0.75 0.85 0.85 0.75 

1ˆ
Hα + 1̂

Hβ  
0.847 

(0.025) 
[-0.003**] 

0.847 
(0.025) 

[-0.003**] 

0.726 
(0.125) 

[-0.024**] 

0.848 
(0.025) 

[-0.002**]

0.848 
(0.025) 

[-0.002**] 

0.732 
(0.107) 

[-0.018**]

1v     5 5 5 

1̂v     
5.04 

(0.36) 
[0.04**] 

5.04 
(0.36) 

[0.04**] 

5.04 
(0.36) 

[0.04**]
2)( Hσ  0.33 0.067 0.2 0.33 0.0666 0.2 

2ˆ( )Hσ  
0.33 

(0.014) 
[0] 

0.067 
(0.003) 

[0] 

0.2 
(0.005) 

[0] 

0.335 
(0.025) 

[0.005**]

0.0669 
(0.005) 

[0.0003**] 

0.2 
(0.008) 

[0] 
Hkξ  3 3 3 9 9 9 

ˆHkξ  
2.998 

(0.070) 
[-0.002**] 

2.998 
(0.070) 

[-0.002**] 

2.998 
(0.070) 

[-0.002**] 

7.798 
(4.593) 

[-1.202**]

7.799 
(4.592) 

[-1.201**] 

7.797 
(4.598) 

[-1.203**]

Notes: 1. Hφ , H
1α , and H

1β  refer to the parameters of the strong standard GARCH(1,1) filter for high-frequency 
observations. 1v  denotes the number of degrees of freedom of the Student’s t distribution assumed for 

the high-frequency return innovations. 2)( Hσ  denotes the unconditional innovation variance, i.e. 

2

1 1

( )
(1 )

H
H

H H

φσ
α β

=
− −

, and Hkξ  denotes the unconditional kurtosis of the standardised 

high-frequency innovation tξ . 

           2. A circumflexed symbol, say, ˆHφ , denotes the estimate for the true value in Hφ , whilst the bar over ˆHφ , 

i.e. ˆHφ  denotes the mean of all ˆHφ  across the 10000 Monte Carlo simulations. Namely,  

                 ˆHφ = 1,...,
ˆH
ii N

N

φ
=∑ , where N = 10000. 
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3. Parenthesised figures denote the sample standard deviations for the estimates from 10000 Monte Carlo 

replications, whilst figures in square brackets denote the average biases, i.e. the deviation of the average 

estimates from their true values, i.e. ˆHφ - Hφ , for example. 
4. Significance tests are performed on the figures in the square brackets to see whether the average biases of 

the estimates are significantly different from zero. The test statistics, 0
( ) /
x

StD x N
− , where x denotes the 

bias of the estimates and N refers to the number of Monte Carlo simulations, follows a standard normal 
distribution according to the central limit theorem. The ** sign shows significance at the 1% significance 
level, whereas * indicates significance at the 5% significance level. Figures in the shaded brackets are not 
significantly different from zero at the 5% significance level. 

 

Table A.2: Parameterisations of the aggregated weak GARCH(1,1) model implied by the 
corresponding high-frequency parameterisations in Table A.1 and their ML 
estimates 

Driving Disturbances: 

tξ ~ N(0,1) tξ ~ t5 

Parameterisation: Parameterisation: 

Low-Frequency 
Estimation 

1 2 3 1 2 3 

(2)
Lφ  0.185 0.037 0.175 0.185 0.037 0.175 

(2)
ˆLφ  

0.195 
(0.057) 
[0.01**] 

0.039 
(0.011) 

[0.002**] 

0.215 
(0.147) 
[0.04**] 

0.194 
(0.044) 

[0.009**] 

0.039 
(0.009) 

[0.002**] 

0.194 
(0.107) 

[0.019**] 

1(2)
Lα  0.126 0.126 0.038 0.173 0.173 0.057 

1(2)ˆ Lα  
0.127 

(0.027) 
[0.001**] 

0.127 
(0.027) 

[0.001**] 

0.039 
(0.021) 

[0.001**] 

0.163 
(0.033) 

[-0.01**] 

0.163 
(0.033) 

[-0.01**] 

0.053 
(0.023) 

[-0.004**]

1(2)
Lβ  0.597 0.597 0.525 0.55 0.55 0.506 

1(2)
ˆ Lβ  

0.581 
(0.101) 

[-0.016**] 

0.581 
(0.101) 

[-0.016**] 

0.422 
(0.372) 

[-0.103**]

0.543 
(0.083) 

[-0.007**] 

0.543 
(0.083) 

[-0.007**] 

0.459 
(0.279) 

[-0.047**]

1(2)
Lα + 1(2)

Lβ  0.723 0.723 0.563 0.723 0.723 0.563 

1(2)ˆ Lα + 1(2)
ˆ Lβ  

0.708 
(0.088) 

[-0.015**] 

0.708 
(0.088) 

[-0.015**] 

0.461 
(0.367) 

[-0.102**]

0.706 
(0.068) 

[-0.017**] 

0.706 
(0.068) 

[-0.017**] 

0.512 
(0.272) 

[-0.051**]

2v̂     5.254 
(0.574) 

5.254 
(0.574) 

6.475 
(0.869) 

2
(2)( )Lσ  0.67 0.13333 0.4 0.67 0.13 0.4 

2
(2)ˆ( )Lσ  

0.67 
(0.033) 

[0] 

0.1333 
(0.007) 

[-0.00003**]

0.4 
(0.013) 

[0] 

0.663 
(0.054) 

[-0.007**] 

0.133 
(0.011) 

[-0.003**] 

0.398 
(0.019) 

[-0.002**]

Notes: 1. Footnotes to Table A.1 also apply here, the superscript L being substituted for H to denote that the 
notation used here refers to the calculated and estimated parameters of the aggregated (low-frequency) 
weak GARCH(1,1) model. Parenthesised 2 in the subscripts denote the number of high-frequency 
observations within each aggregation interval. 

2. The true values of the parameters are from the DN aggregation formulae. 
3. As the theoretical value in the number of degrees of freedom for the standardised aggregated 

low-frequency innovations, i.e. 2v , is not available, the implied unconditional kurtosis of the 

standardised aggregated low-frequency innovation, i.e. Lkξ , is not available either. We thus exclude both 
their average estimates from Table A.2. 
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Table A.3: The Average ML Estimates of the Strong Standard HF and LF GARCH(1,1) Filters under DGPs 1 and 2 
Panel A: high-frequency estimates 

Case 
No 

(DGP No, 
Driving 

Disturbance)
( )

H
s tφ  ˆHφ  1 ( )

H
s tα  

1ˆ
Hα  1 ( )

H
s tβ  

1̂
Hβ  1 ( )

H
s tα + 1 ( )

H
s tβ  

1ˆ
Hα + 1̂

Hβ 2
( )( )H

s tσ  2ˆ( )Hσ  
Hkξ  ˆHkξ  

1 (DGP 1, 
N(0,1)) 

1
Hφ =0.05 

2
Hφ =0.01 

0.030 
(0.005) 

11
Hα = 12

Hα
=0.15 

0.149
(0.016)

11
Hβ = 12

Hβ
=0.7 

0.698 
(0.033)

11
Hα + 11

Hβ =0.85

12
Hα + 12

Hβ =0.85
0.848 

(0.025) 

2
1( )Hσ =0.2108

2
2( )Hσ =0.1892

0.2 
(0.009) 3 3.012 

(0.071) 

2 (DGP 2, 
N(0,1)) 

1
Hφ = 2

Hφ  
=0.05 

0.052 
(0.012) 

11
Hα =0.15

12
Hα =0.05

0.100
(0.016)

11
Hβ = 12

Hβ
=0.7 

0.690 
(0.056)

11
Hα + 11

Hβ =0.85

12
Hα + 12

Hβ =0.75
0.790 

(0.047) 

2
1( )Hσ =0.2552

2
2( )Hσ =0.2414

0.248 
(0.008) 3 3.017 

(0.072) 

 

Case 
No 

(DGP No, 
Driving 

Disturbance)
( )

H
s tφ  ˆHφ  1 ( )

H
s tα  

1ˆ
Hα  1 ( )

H
s tβ  

1̂
Hβ  1 ( )

H
s tα + 1 ( )

H
s tβ  1ˆ

Hα +

1̂
Hβ  

1v  1̂v  2
( )( )H

s tσ  2ˆ( )Hσ  
Hkξ  ˆHkξ  

3 (DGP 1, t5) 
1
Hφ =0.05 

2
Hφ =0.01 

0.030 
(0.005) 

11
Hα = 12

Hα  
=0.15 

0.150
(0.019)

11
Hβ = 12

Hβ
=0.7 

0.699
(0.035)

11
Hα + 11

Hβ =0.85

12
Hα + 12

Hβ =0.85
0.849 

(0.025) 5 5.01
(0.36)

2
1( )Hσ =0.2108

2
2( )Hσ =0.1892

0.201 
(0.015) 9 7.82 

(4.51) 

4 (DGP 2, t5) 1
Hφ = 2

Hφ  
=0.05 

0.052 
(0.011) 

11
Hα =0.15 

12
Hα =0.05 

0.098
(0.018)

11
Hβ = 12

Hβ
=0.7 

0.692
(0.055)

11
Hα + 11

Hβ =0.85

12
Hα + 12

Hβ =0.75
0.791 

(0.045) 5 5.00
(0.36)

2
1( )Hσ =0.2552

2
2( )Hσ =0.2414

0.249 
(0.013) 9 7.86 

(4.71) 
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Panel B: low-frequency estimates 

Case 
No

(DGP No, 
Driving 

Disturbance) 
( )
ˆL

mφ  ( )
DN
mφ  1( )ˆ L

mα 1( )
DN

mα 1( )
ˆ L

mβ 1( )
DN

mβ  1( )ˆ L
mα + 1( )

ˆ L
mβ 1( )

DN
mα + 1( )

DN
mβ 2

( )ˆ( )L
mσ 2

( )( )DN
mσ  

1 (DGP 1, N(0,1)) 0.117 
(0.035) 

0.112 
(0.016) 

0.124 
(0.027)

0.125 
(0.012)

0.583 
(0.103)

0.594 
(0.042) 

0.707 
(0.089) 

0.719 
(0.042) 

0.4 
(0.020) 

0.4 
(0.017) 

2 (DGP 2, N(0,1)) 0.195 
(0.082) 

0.186 
(0.036) 

0.085 
(0.025)

0.078 
(0.01)

0.521 
(0.177)

0.548 
(0.073) 

0.606 
(0.167) 

0.626 
(0.072) 

0.496 
(0.019) 

0.496 
(0.015) 

 

Case 
No 

(DGP No, 
Driving 

Disturbance)
( )
ˆL

mφ  ( )
DN
mφ  1( )ˆ L

mα 1( )
DN

mα  1( )
ˆ L

mβ 1( )
DN

mβ 1( )ˆ L
mα + 1( )

ˆ L
mβ 1( )

DN
mα + 1( )

DN
mβ 2v̂  2

( )ˆ( )L
mσ 2

( )( )DN
mσ  

( )

ˆ
m

Lkξ  

3 (DGP 1, t5) 
0.117 

(0.027) 
0.112 

(0.016) 
0.161 

(0.033)
0.158 

(0.018)
0.544 

(0.084)
0.563 

(0.044)
0.705 

(0.069) 
0.721 

(0.042) 
5.136 

(0.548)
0.399 

(0.033) 
0.402 

(0.031) 
7.90 

(10.74) 

4 (DGP 2, t5) 
0.188 

(0.059) 
0.185 

(0.035) 
0.110 

(0.029)
0.103 

(0.016)
0.509 

(0.134)
0.524 

(0.073)
0.619 

(0.121) 
0.627 

(0.070) 
6.188 

(0.796)
0.493 

(0.029) 
0.497 

(0.027) 
6.32 

(7.21) 
Notes: 1. Statistics with superscript DN are of the implied aggregated weak GARCH(1,1) model, calculated by the DN aggregation formulae applied on the mis-specified standard 

strong HF GARCH(1,1) filter. 2. Statistics with superscript L are related to the strong standard GARCH(1,1) filter estimated for the aggregated observations. Note that 2v̂  and 

( )

ˆ
m

Lkξ  denote, respectively, the estimated number of degrees of freedom and unconditional kurtosis for the t-distributed standardised aggregated innovations of the LF 

GARCH(1,1) filter. However, there are no formulae for the analytical results of 2v  and 
( )m

Lkξ . 3. The sample standard deviations for N = 10000 estimates are reported in 

parentheses.
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Appendix B 

─Derivations of the Formulae for the Unconditional Innovation Variances of a Two-Stage 

PGARCH(1,1) Model 

A general two-stage PGARCH(1,1) model is given by  

1)(1
2

1)(1)( −− ++= ttsttstst hh βεαφ , (B.1) 

where s(t) = 1 for odd t and 2 for even t. 

 

It follows from (B.1) that 112
2
11222 hh βεαφ ++= .  (B.2) 

Moving the time tag one period forward and substituting h2 by (B.2) leads to 

211
2
21113 hh βεαφ ++= = )( 112

2
112211

2
2111 hβεαφβεαφ ++++  

= 11211
2
11112

2
2112111 hββεβαεαφβφ ++++ . (B.3) 

Similarly, we can get 

312
2
31224 hh βεαφ ++= = )( 11211

2
11112

2
211211112

2
3122 hββεβαεαφβφβεαφ ++++++  

= 1
2

1211
2
1121112

2
21211

2
312212111122 hββεββαεβαεαφββφβφ ++++++ , (B.4) 

 

5h = 411
2
4111 hβεαφ ++  

= )( 1
2

1211
2
1121112

2
21211

2
31221211112211

2
4111 hββεββαεβαεαφββφβφβεαφ ++++++++  

= 2 2 2 2
1 11 2 11 12 1 11 12 2 11 4 12 11 3 11 11 12 2φ β φ β β φ β β φ α ε α β ε α β β ε+ + + + + + + 2 2 2 2

12 11 12 1 11 12 1hα β β ε β β+ , 

 (B.5) 

6h = 512
2
5122 hβεαφ ++  

= 2φ + 2
12 5α ε + 12β ( 1φ + 11 2β φ + 11 12 1β β φ + 2

11 12 2β β φ + 2
11 4α ε + 2

12 11 3α β ε  + 2
11 11 12 2α β β ε  + 2 2

12 11 12 1α β β ε  + 

2 2
11 12 1hβ β ) 

= 2
1 12 11 12( )φ β β β+ + 2 2

2 11 12 11 12(1 )φ β β β β+ + + 2
12 5α ε + 2

11 12 4α β ε + 2
12 11 12 3α β β ε + 2 2

11 11 12 2α β β ε  + 

2 2 2
12 11 12 1α β β ε  + 2 3

11 12 1hβ β ,   (B.6) 

 

7h = 1φ + 2
11 6α ε + 11 6hβ  

= 1φ + 2
11 6α ε + 2

11 1 12 11 12[ ( )β φ β β β+ + 2 2
2 11 12 11 12(1 )φ β β β β+ + + 2

12 5α ε + 2
11 12 4α β ε + 2

12 11 12 3α β β ε +

2 2
11 11 12 2α β β ε + 2 2 2

12 11 12 1α β β ε + 2 3
11 12 1hβ β ] 

= 2 2
1 11 12 11 12(1 )φ β β β β+ + + 2 3 2

2 11 11 12 11 12( )φ β β β β β+ + + 2
11 6α ε + 2

12 11 5α β ε + 2
11 11 12 4α β β ε + 2 2

12 11 12 3α β β ε +

2 2 2
11 11 12 2α β β ε + 3 2 2

12 11 12 1α β β ε + 3 3
11 12 1hβ β  (B.7) 
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Let oddh  denote the unconditional variance of tε  for odd t, and evenh the unconditional variance 

of tε  for even t. The form of oddh  can be induced from (B.3), (B.5), and (B.7) as follows:    

oddh = 1φ ( 1 + 11 12β β  + 2 2
11 12β β  + ...) + 2 11φ β ( 1 + 11 12β β  + 2 2

11 12β β  + …) + 11α ( 1 + 11 12β β  + 

2 2
11 12β β  + ... ) evenh  + 12 11α β (1+ 11 12β β + 2 2

11 12β β +…) oddh . (B.8) 

 

If 10 1211 <≤ ββ , (B.8) can be rewritten as 

1 2 11 11 12 11

11 12 11 12 11 12 11 121 1 1 1odd even oddh h hφ φ β α α β
β β β β β β β β

= + + +
− − − −

. (B.9) 

 

Moving the oddh  term in the RHS of (B.9) to the LHS gives 

evenodd hh
1211

11

1211

1121

1211

1112

11
)

1
1(

ββ
α

ββ
βφφ

ββ
βα

−
+

−
+

=
−

− . (B.10) 

 

Multiplying 11 121 β β−  through (B.10) gives 

evenodd hh 11112111121211 )1( αβφφβαββ ++=−−  (B.11) 

 

By similar arguments, 

evenh  = 1 12φ β ( 1 + 11 12β β  + 2 2
11 12β β  + … ) + 2φ ( 1 + 11 12β β  + 2 2

11 12β β  + … ) + 12α ( 1+ 11 12β β  + 

2 2
11 12β β  + … ) oddh  + 11 12α β ( 1 + 11 12β β  + 2 2

11 12β β  + … ) evenh  

⇒ oddeven hh
1211

12

1211

2121

1211

1211

11
)

1
1(

ββ
α

ββ
φβφ

ββ
βα

−
+

−
+

=
−

−  

⇒ oddeven hh 12212112111211 )1( αφβφβαββ ++=−−  (B.12) 

 

From (B.11), oddeven hh
11

11121211

11

1121 1
α

βαββ
α

βφφ −−
+

+
−=  (B.13) 

From (B.12), oddeven hh
12111211

12

12111211

2121

11 βαββ
α

βαββ
φβφ

−−
+

−−
+

= , (B.14) 

 

Equating the RHS of equations (B.13) and (B.14) above gives 

1 2 11 11 12 12 11 1 12 2 12

11 11 11 12 11 12 11 12 11 12

1
1 1odd oddh hφ φ β β β α β φ β φ α

α α β β α β β β α β
+ − − +

− + = +
− − − −

. 
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1 2 11 11

11 11 12 12

( )
1 ( )( )oddh φ φ α β

α β α β
+ +

∴ =
− + +

 (B.15) 

 

Substituting equation (B.15) into equation (B.13) gives 

2 1 12 12

11 11 12 12

( )
1 ( )( )evenh φ φ α β

α β α β
+ +

=
− + +

.            (B.16) 
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